Combination of Black Cumin Seeds with Curcuma xanthorrhiza Extract as an antioxidant and immunomodulator agent in the Covid-19 Pandemic Era

Akrom Akrom, Titiek Hidayati, Nurcholid Umam, Ginanjar Zuhruf Saputri

Abstract


The COVID-19 pandemic demands changes in using of medicinal plants. Empirically, the medicinal plants of Curcuma xanthorrhiza (CX) and black cumin (BC) have been used massively in the era of the covid-19 pandemic. CXBC preparations have been developed with the main ingredients of BC oil and CX extract. The purpose of the study was to determine the content of active substances (polyphenols, flavonoids, thymoquinone), antioxidant and immunomodulatory activities of CXBC preparations. We conducted experimental laboratory research. The immunomodulatory activity test was carried out on THB-183 cells by observing the expression of TNF-α and IL-10. The results showed that the CXBC preparation contained 4% thymoquinone, 25.87 mg/ml polyphenols, and 41.86 mg/dl flavonoids. CXBC preparations contain vitamins (A, C, and E) and minerals (potassium, calcium). The antioxidant activity of the CXBC preparation was included in the strong category with IC50 = 54.87 ppm. CXBC preparations increased TNF-a expression and decreased IL-10 expression in THB-138 cells. Based on the study results, it can be concluded that the CXBC preparation contains 4% thymoquinone, 25.87 mg/ml polyphenol, 41.86 mg/dl flavonoid, and a high level of vitamin and minerals. CXBC preparations have potent antioxidant activity, increase TNF-α and decrease IL-10 expression.


References


Y. Hanafi et al., “The new identity of Indonesian Islamic boarding schools in the ‘new normal’: the education leadership response to COVID-19,” Heliyon, vol. 7, no. 3, 2021, doi: 10.1016/j.heliyon.2021.e06549.

J. S. Mani et al., “Natural product-derived phytochemicals as potential agents against coronaviruses: A review,” Virus Research, vol. 284. Elsevier B.V., Jul. 15, 2020, doi: 10.1016/j.virusres.2020.197989.

E. Darmawan, A. Akrom, E. F. Lerebulan, and A. Adnan, “Jamu Reduce Oxidative Stress from Active Smokers in a Rural Area of Yogyakarta,” IOP Conf. Ser. Earth Environ. Sci., vol. 810, no. 1, 2021, doi: 10.1088/1755-1315/810/1/012039.

Y. J. Kang, K. K. Park, W. Y. Chung, J. K. Hwang, and S. K. Lee, “Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells,” J. Pharmacol. Sci., vol. 111, no. 3, pp. 276–284, 2009, doi: 10.1254/jphs.09141FP.

A. Koshak, E. Koshak, and M. Heinrich, “Medicinal benefits of Nigella sativa in bronchial asthma: A literature review,” Saudi Pharm. J., vol. 25, no. 8, pp. 1130–1136, 2017, doi: 10.1016/j.jsps.2017.07.002.

S. F. Oon et al., “Xanthorrhizol: A review of its pharmacological activities and anticancer properties,” Cancer Cell Int., vol. 15, no. 1, pp. 1–15, 2015, doi: 10.1186/s12935-015-0255-4.

N. Kertia, D. Nurwachid Achadiono, A. Paramaiswari, and A. Syarifa Fadlilah, “ANTI-INFLAMMATORY ACTIVITIES OF TEMULAWAK, GINGER, SOYBEAN AND SHRIMP SHELL EXTRACTS IN COMBINATION COMPARED TO DICLOFENAC SODIUM (Ability in Reducing the Pain and Synovial Fluid Leucocyte Count of Osteoarthritis) 1 1 1 2.”

I. Indrayanti, K. A. Kamila, B. A. Hernowo, F. A. Haq, and A. Akrom, “Temulawak (Curcuma xanthorrhiza) Extract as a Cancer Chemopreventive Agent Via Up-Regulation p53 and Caspase-3 Gene,” IOP Conf. Ser. Earth Environ. Sci., vol. 810, no. 1, 2021, doi: 10.1088/1755-1315/810/1/012038.

W. Nurcholis, A. A. Munshif, and L. Ambarsari, “Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from indonesia,” Brazilian J. Pharmacogn., vol. 28, no. 1, pp. 44–49, Jan. 2018, doi: 10.1016/j.bjp.2017.11.001.

Y. Chen, C. Li, S. Duan, X. Yuan, J. Liang, and S. Hou, “Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice,” Biomed. Pharmacother., vol. 118, no. May, p. 109195, 2019, doi: 10.1016/j.biopha.2019.109195.

A. H. Mahmoud YK, “Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy,” Biomed Pharmacother, vol. 3, no. 115, p. 108783, 2019.

A. S. Dehyab, M. F. A. Bakar, M. K. AlOmar, and S. F. Sabran, “A review of medicinal plant of Middle East and North Africa (MENA) region as source in tuberculosis drug discovery,” Saudi J. Biol. Sci., vol. 27, no. 9, pp. 2457–2478, 2020, doi: 10.1016/j.sjbs.2020.07.007.

S. Arjumand, M. Shahzad, A. Shabbir, and M. Z. Yousaf, “Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α IL-1, and NFκB expression levels,” Biomed. Pharmacother., vol. 111, no. October 2018, pp. 958–963, 2019, doi: 10.1016/j.biopha.2019.01.006.

A. Ahmad et al., “A review on therapeutic potential of Nigella sativa: A miracle herb,” Asian Pac. J. Trop. Biomed., 2013, doi: 10.1016/S2221-1691(13)60075-1.

P. M. Paarakh, “Nigella sativa Linn.- A comprehensive review,” Indian Journal of Natural Products and Resources. 2010.

Akrom and Mustofa, “Black cumin seed oil increases phagocytic activity and secretion of IL-12 by macrophages.,” Biomed. Res., vol. 28, no. 12, pp. 5241–5246, 2017.

D. R. Fajar, Akrom, and E. Darmawan, “The influence of black cumin seed oil therapy with dosage of 1.5 mL/day and 3 mL/day to interleukin-21 (IL-21) expression of the patients with metabolic syndrome risk,” IOP Conf. Ser. Mater. Sci. Eng., vol. 259, no. 1, 2017, doi: 10.1088/1757-899X/259/1/012012.

H. Hosseinzadeh, M. Tafaghodi, M. J. Mosavi, and E. Taghiabadi, “Effect of Aqueous and Ethanolic Extracts of Nigella sativa Seeds on Milk Production in Rats,” JAMS J. Acupunct. Meridian Stud., vol. 6, no. 1, pp. 18–23, Feb. 2013, doi: 10.1016/j.jams.2012.07.019.

A. F. Majdalawieh and M. W. Fayyad, “Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review,” Int. Immunopharmacol., vol. 28, no. 1, pp. 295–304, 2015, doi: 10.1016/j.intimp.2015.06.023.

S. H. M. Aljabre, O. M. Alakloby, and M. A. Randhawa, “Dermatological effects of Nigella sativa,” J. Dermatology Dermatologic Surg., vol. 19, no. 2, pp. 92–98, 2015, doi: 10.1016/j.jdds.2015.04.002.

T. Hidayati, A. Pramono, I. M. Jenie, and M. H. Soesatyo, “Evaluation of black cumin seeds hexane extract as reactive oxygen intermediates (ROI) and phagocytic activity modulator in DMBA inducedrats,” Biomed. Res., vol. 28, no. 4, pp. 1755–1760, 2017.

T. Hidayati, Akrom, Indrayanti, and Sagiran, “Chemopreventive effect of black cumin seed oil (BCSO) by increasing p53 expression in dimethylbenzanthracene (DMBA)-induced Sprague Dawley rats,” Res. J. Chem. Environ., vol. 23, no. 8, 2019.

D. Rokhmah, K. Ali, S. M. D. Putri, and K. Khoiron, “Increase in public interest concerning alternative medicine during the COVID-19 pandemic in Indonesia: a Google Trends study [version 2; peer review: 2 approved, 1 approved with reservations],” F1000Research, vol. 9, pp. 1–19, 2021, doi: 10.12688/F1000RESEARCH.25525.2.

R. V. Nugraha, H. Ridwansyah, M. Ghozali, A. F. Khairani, and N. Atik, “Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons,” Evidence-based Complement. Altern. Med., vol. 2020, 2020, doi: 10.1155/2020/2560645.

L. Singh et al., “Modulation of Host Immune Response Is an Alternative Strategy to Combat SARS-CoV-2 Pathogenesis,” Front. Immunol., vol. 12, no. July, pp. 1–17, 2021, doi: 10.3389/fimmu.2021.660632.

K. Zarkesh et al., “Drug-based therapeutic strategies for COVID-19-infected patients and their challenges,” Future Microbiol., vol. 16, no. 18, pp. 1415–1451, 2021, doi: 10.2217/fmb-2021-0116.

M. P. Ntyonga-Pono, “COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?,” Pan Afr. Med. J., vol. 35, no. Supp 2, p. 12, 2020, doi: 10.11604/pamj.2020.35.2.22877.

D. Liana and A. Phanumartwiwath, “Leveraging knowledge of Asian herbal medicine and its active compounds as COVID-19 treatment and prevention,” J. Nat. Med., no. 0123456789, 2021, doi: 10.1007/s11418-021-01575-1.

K. Das, “Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine,” J. Herb. Med., p. 100501, 2021, doi: 10.1016/j.hermed.2021.100501.

J. L. McKechnie and C. A. Blish, “The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?,” Cell Host Microbe, vol. 27, no. 6, pp. 863–869, 2020, doi: 10.1016/j.chom.2020.05.009.

R. Karki et al., “Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes,” Cell, vol. 184, no. 1, pp. 149-168.e17, 2021, doi: 10.1016/j.cell.2020.11.025.

L. Borges, T. C. Pithon-Curi, R. Curi, and E. Hatanaka, “COVID-19 and Neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps,” Mediators Inflamm., vol. 2020, 2020, doi: 10.1155/2020/8829674.

M. F. Nagoor Meeran et al., “Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019,” Heliyon, vol. 7, no. 2, p. e05990, 2021, doi: 10.1016/j.heliyon.2021.e05990.

B. Bordallo, M. Bellas, A. F. Cortez, M. Vieira, and M. Pinheiro, “Severe COVID-19: What have we learned with the immunopathogenesis?,” Adv. Rheumatol., vol. 60, no. 1, 2020, doi: 10.1186/s42358-020-00151-7.

S. Suhail et al., “Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review,” Protein J., vol. 39, no. 6, pp. 644–656, 2020, doi: 10.1007/s10930-020-09935-8.

L. Nicolai et al., “Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia,” J. Thromb. Haemost., vol. 19, no. 2, pp. 574–581, 2021, doi: 10.1111/jth.15179.

P. Prakash et al., “Evidence-based traditional Siddha formulations for prophylaxis and management of respiratory symptoms in COVID-19 pandemic-a review,” Biocatal. Agric. Biotechnol., vol. 35, no. April, p. 102056, 2021, doi: 10.1016/j.bcab.2021.102056.

A. Saifudin, T. Usia, S. AbLallo, H. Morita, K. Tanaka, and Y. Tezuka, “Potent water extracts of Indonesian medicinal plants against PTP1B,” Asian Pac. J. Trop. Biomed., vol. 6, no. 1, pp. 38–43, 2016, doi: 10.1016/j.apjtb.2015.09.021.

R. K. Thimmulappa et al., “Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19,” Heliyon, vol. 7, no. 2, p. e06350, 2021, doi: 10.1016/j.heliyon.2021.e06350.

S. Kumari, M. Deori, R. Elancheran, J. Kotoky, and R. Devi, “In vitro and in vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.) extract,” Front. Pharmacol., vol. 7, no. OCT, pp. 1–12, 2016, doi: 10.3389/fphar.2016.00400.

M. Govarthanan, R. Rajinikanth, S. Kamala-Kannan, and T. Selvankumar, “A comparative study on bioactive constituents between wild and in vitro propagated Centella asiatica,” J. Genet. Eng. Biotechnol., vol. 13, no. 1, pp. 25–29, 2015, doi: 10.1016/j.jgeb.2014.12.003.

A. A. A, S. Ahmad, and M. Maziah, “TOTAL ANTI-OXIDANT CAPACITY , FLAVONOID , PHENOLIC ACID AND POLYPHENOL CONTENT IN TEN SELECTED SPECIES OF ZINGIBERACEAE RHIZOMES Alafiatayo et al ., Afr J Tradit Complement Altern Med . ( 2014 ) 11 ( 3 ): 7-13,” African J. Tradit. Complement. Altern. Med., vol. 11, no. 3, pp. 7–13, 2014.

H. F. Ismail, Z. Hashim, W. T. Soon, N. S. A. Rahman, A. N. Zainudin, and F. A. A. Majid, “Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo,” J. Tradit. Complement. Med., vol. 7, no. 4, pp. 452–465, 2017, doi: 10.1016/j.jtcme.2016.12.006.

K. Srinivasan, “Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects,” Food Qual. Saf., vol. 2, no. 1, 2018, doi: 10.1093/fqsafe/fyx031.

L. Xiaoyan et al., “Clinical outcomes of influenza-like illness treated with Chinese herb-al medicine: an observational study,” J Tradit Chin Med, vol. 38, no. 1, pp. 107–116, 2018, [Online]. Available: http://www.journaltcm.com.

N. Salaj et al., “Traditional multi-herbal formula in diabetes therapy – Antihyperglycemic and antioxidant potential,” Arab. J. Chem., vol. 14, no. 10, 2021, doi: 10.1016/j.arabjc.2021.103347.

T. P. Hsueh, W. L. Lin, and T. H. Tsai, “Pharmacokinetic interactions of herbal medicines for the treatment of chronic hepatitis,” Journal of Food and Drug Analysis, vol. 25, no. 2. Elsevier Taiwan LLC, pp. 209–218, Apr. 01, 2017, doi: 10.1016/j.jfda.2016.11.010.

J. Yin et al., “Chinese herbal medicine compound Yi-Zhi-Hao pellet inhibits replication of influenza virus infection through activation of heme oxygenase-1,” Acta Pharm. Sin. B, vol. 7, no. 6, pp. 630–637, Nov. 2017, doi: 10.1016/j.apsb.2017.05.006.

R. B. Mulaudzi, A. R. Ndhlala, and J. Van Staden, “Ethnopharmacological evaluation of a traditional herbal remedy used to treat gonorrhoea in Limpopo province, South Africa,” South African J. Bot., vol. 97, pp. 117–122, 2015, doi: 10.1016/j.sajb.2014.12.007.

R. Parveen, T. N. Shamsi, G. Singh, T. Athar, and S. Fatima, “Phytochemical analysis and In-vitro Biochemical Characterization of aqueous and methanolic extract of Triphala, a conventional herbal remedy,” Biotechnol. Reports, vol. 17, pp. 126–136, Mar. 2018, doi: 10.1016/j.btre.2018.02.003.

H. A. M. Moustafa, L. M. El Wakeel, M. R. Halawa, N. A. Sabri, A. Z. El-Bahy, and A. N. Singab, “Effect of Nigella Sativa oil versus metformin on glycemic control and biochemical parameters of newly diagnosed type 2 diabetes mellitus patients,” Endocrine, vol. 65, no. 2, 2019, doi: 10.1007/s12020-019-01963-4.

T. Awin et al., “Phytochemical profiles and biological activities of Curcuma species subjected to different drying methods and solvent systems: NMR-based metabolomics approach,” Ind. Crops Prod., vol. 94, pp. 342–352, Dec. 2016, doi: 10.1016/j.indcrop.2016.08.020.

S. Hadi, P. Mirmiran, R. Daryabeygi-Khotbesara, and V. Hadi, “Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: A randomized, double-blind, placebo controlled trial,” Prog. Nutr., vol. 20, no. 9, pp. 127–133, 2018, doi: 10.23751/pn.v20i1-S.6062.

V. Iliadi, I. Konstantinidou, K. Aftzoglou, S. Iliadis, T. G. Konstantinidis, and C. Tsigalou, “The emerging role of neutrophils in the pathogenesis of thrombosis in covid-19,” Int. J. Mol. Sci., vol. 22, no. 10, 2021, doi: 10.3390/ijms22105368.

L. Quartuccio et al., “Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care,” J. Clin. Virol., vol. 129, no. May, p. 104444, 2020, doi: 10.1016/j.jcv.2020.104444.

Y. K. Mahmoud and H. M. A. Abdelrazek, “Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy,” Biomed. Pharmacother., vol. 115, no. November 2018, 2019, doi: 10.1016/j.biopha.2019.108783.

T. Hidayati, “Black Cumin Seeds Extract Increase Lymphocyte Activity in IFN-γ Secretion in Sprague Dawley Rat ( SD ) Induced by Dimethylbenzantracene,” no. October, pp. 140–148, 2019.

F. T. Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, “Immunomodulatory and Anti-inflammatory Effects of Thymoquinone. Cardiovasc Hematol,” Disord Drug Targets., vol. 18, no. 1, pp. 52–60, 2018.

A. Akrom, R. Nurfadjrin, E. Darmawan, and T. Hidayati, “Black Cumin Seed Oil Antidiabetogenic by Increasing Pancreatic P53 Expression,” Int. J. Public Heal. Sci., vol. 7, no. 3, p. 207, 2018, doi: 10.11591/ijphs.v7i3.13694.

A. Akrom and E. Darmawan, “Tolerability and safety of black cumin seed oil (Bcso) administration for 20 days in healthy subjects,” Biomed. Res., vol. 28, no. 9, pp. 4196–4201, 2017.

A. M. Pourbagher-Shahri, T. Farkhondeh, M. Ashrafizadeh, M. Talebi, and S. Samargahndian, “Curcumin and cardiovascular diseases: Focus on cellular targets and cascades,” Biomed. Pharmacother., vol. 136, p. 111214, 2021, doi: 10.1016/j.biopha.2020.111214.

G. Sferrazza et al., “Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases,” Acta Pharmaceutica Sinica B. Chinese Academy of Medical Sciences, 2020, doi: 10.1016/j.apsb.2019.12.019.

U. Buyandelger, D. G. Walker, H. Taguchi, D. Yanagisawa, and I. Tooyama, “Novel fluorinated derivative of curcumin negatively regulates thioredoxin-interacting protein expression in retinal pigment epithelial and macrophage cells,” Biochem. Biophys. Res. Commun., vol. 532, no. 4, pp. 668–674, 2020, doi: 10.1016/j.bbrc.2020.08.114.

C. Biochemistry et al., “Anti-inflammatory Activity of Temulawak Nanocurcuminoid Coated with Palmitic Acid in The Sprague Dawley Rat,” Curr. Biochem., vol. 2, no. 2, pp. 73–85, 2015, doi: 10.29244/73-85.

S. Umar et al., “Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys,” Poult. Sci., vol. 95, no. 7, pp. 1513–1520, 2016, doi: 10.3382/ps/pew069.




DOI: http://doi.org/10.11591/ijphs.v11i3.21683

Refbacks

  • There are currently no refbacks.


International Journal of Public Health Science (IJPHS)
p-ISSN: 2252-8806, e-ISSN: 2620-4126

View IJPHS Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.