Insecticide resistance of *Aedes aegypti* in Indonesia: a systematic review

Liena Sofiana¹, Rokhmayanti Rokhmayanti¹, Martini Martini², Dewi Ariyani Wulandari³

¹Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
²Faculty of Public Health, Diponegoro University, Semarang, Indonesia
³Public Health Science Program, STIKES Wira Husada, Yogyakarta, Indonesia

**ABSTRACT**

In Indonesia, dengue hemorrhagic fever (DHF) continues to be an issue. Although there have been fewer dengue infections in the past three years, many areas of Indonesia remain dengue endemic. Insecticide use is one DHF prevention and control method that has been used for a long time. Long-term usage of insecticides can cause the vector, *Aedes aegypti*, to develop resistance. Insecticide resistance to *Aedes aegypti* in Indonesia was the focus of this study's analysis of the literature review. A systematic review using keywords based on population, interest and context (PICo) was employed in the study strategy. The databases used to find the publications were ScienceDirect, ProQuest, PubMed, Google Scholar, and Garuda from 2018 to 2022. Hence, 40 papers out of the 6,429 total articles were relevant and should be reviewed and analyzed. According to an analysis of the paper, it was discovered that *Aedes aegypti* mosquitoes are resistant to insecticides of the pyrethroid and organophosphate classes in various parts of Indonesia. However, it was discovered that several regions were both tolerant of and vulnerable to pyrethroids and organophosphates. If insecticides are to be utilized intolerant and vulnerable locations, monitoring and evaluation of their usage must be done, and a strategy of varying insecticide kinds and dosages and boosting community empowerment toward mosquito nest elimination behaviour must be implemented.

**Keywords:**

*Aedes aegypti*, Insecticide, Organophosphate, Pyrethroid, Resistance

This is an open access article under the CC BY-SA license.

**Corresponding Author:**

Liena Sofiana
Faculty of Public Health, Universitas Ahmad Dahlan
Prof. Dr. Soepomo Street, Janturan, Warungboto, Umbulharjo, Yogyakarta
Email: liena.sofiana@ikm.uad.ac.id

1. **INTRODUCTION**

Dengue hemorrhagic fever (DHF) is an infection caused by the dengue virus, which is transmitted from *Aedes aegypti* and *Aedes albopictus* mosquitoes as primary vectors, as well as *Aedes polynesiensis*, *Aedes scutellaris* and *Aedes (Finlaya) niveus* as secondary vectors [1]. Over 50 years DHF in Indonesia has experienced an increase in cases, with an incidence rate in 1968 of 0.05 cases per 100,000 population to 22.55 cases per 100,000 population in 2017, with the highest peak incidence occurring in 1973, 1988, 1998, 2009 and 2016 [2]. The tendency of the most DHF cases often occurring from January to April can be attributed to meteorological factors, including rainfall and high humidity [3]. Over the past three years, there have been fewer DHF instances; from 2019 to 2021, there were 138,127 cases, down to 73,518 cases. Similarly, the number of fatalities brought on by DHF has dropped from 919 to 747. Between 2012 and 2020, Indonesia's case fatality rate (CFR) decreased from 0.9% to 0.69%. However, in 2021, this percentage will rise to 0.96%. The national policy for DHF control's aim of 0.7% is exceeded by the DHF case fatality rate [4].
Physical and biological management through initiatives to remove mosquito nests is the key tactic for limiting the DHF vector's ability to spread disease. Draining and sealing water reservoirs and burying discarded objects that might serve as mosquito breeding grounds are actions taken to eliminate mosquito nests. Many individuals think fogging is a better strategy to prevent DHF than removing mosquito nests, and many people need to know how important it is to do so [5]. Indonesia's North Sumatra Province utilized Malathion and Cypermethrin to control DHF, and it was reported that the vectors there were resistant [6]. West Sumatra reported that the *Aedes aegypti* population's genotype was resistant to Malathion and Permethrin [7]. Even though Wonosobo is a highland region, DHF transmission can still happen due to the high density of mosquitoes, which allows the Malathion-resistant mosquito population to continue to exist and breed [8]. Resistance to insecticides emerging Studies shows several mutations associated with pyrethroid resistance in *Aedes aegypti* collected from the city of Magelang; these mutations may be connected to the city of Magelang's modest population growth and human urbanization [9]. The non-specific increases in esterase and monooxygenase activity against *Aedes aegypti* are the basis for the resistance mechanism to Malathion and Cypermethrin [10]. Insecticides control mosquito populations since they can live when exposed to them, but repeated usage of an area may result in resistance [11]. Insecticides were formerly successful in keeping mosquitoes under control. However, the rise in DHF cases has led to an increase in resistance and a negative impact on the ecology and ecosystems, making insecticides useless [12]. Insecticides have been evaluated for their efficiency in combating mosquitoes, and strategies, including rotational application, which can prevent the emergence of resistance, have been suggested [13].

2. METHOD

The systematic review method was employed in this investigation. We used keywords based on the population, interest and context (PICo) categories. Five databases, including Science Direct, ProQuest, PubMed, Google Scholar, and Garuda, were searched for scholarly publications published between 2018 and 2022. All of the following keywords are utilized in each database: Indonesia AND *Aedes* OR dengue OR *aegypti* OR *albopictus* AND pesticides OR insecticide OR fogging OR organophosphate OR pyrethroid OR resistance OR knockdown OR mutation with year limit from 2018–2022. According to the screening findings, 39 articles satisfied the inclusion criteria and were relevant to the study issue (Figure 1).

For this systematic review, the several criteria were used to determine inclusion. The following requirements should be met: i) the article discusses insecticide resistance to larvae and mosquitoes of *Aedes aegypti* that occur in Indonesia; ii) the study should be a research article (descriptive, cross-sectional, case-control, cohort, or experiment); iii) it should have been published within the previous five years (2018–2022); and iv) open access, when the exclusion criteria were: i) non-Indonesian and non-English published studies; ii) publications that did not fit the topic of the study; iii) duplicate publications; and iv) incomplete text. Data analysis used descriptively includes reviewing articles, reducing data using a matrix of critical points from research articles, compiling data from the results of data reduction, presenting data, validating data using credibility tests, using reference materials in the form of theories discovered, and drawing conclusions.

![Figure 1. The search process on the article search engine](image-url)
3. RESULTS AND DISCUSSION

Figure 1 reveals that there are 39 articles based on the results of a search engine literature search. The details of them [6, 14]-[50] are shown in Table 1 and Table 2 (see in Appendix). The article obtained examines the findings of insecticide resistance in mosquitoes and Aedes aegypti sp. larvae in Indonesia. There were 32 articles (82.05%) on the resistance of mosquitoes to pyrethroid and organophosphate class insecticides and seven articles (17.95%) on insecticide resistance to Aedes aegypti sp. larvae. Aedes aegypti mosquitoes have demonstrated organophosphate resistance in DHF endemic areas, namely 100% with the pesticide malathion 0.8% and a mosquito death rate of 80%, according to a study of studies from Indonesia. The pyrethroid organophosphate group, which includes cypermethrin, permethrin, and deltamethrin, is resistant to the Aedes aegypti mosquito in 98% of the resistant regions where DHF is prevalent. Urban regions where 0.2% and 0.5% cypermethrin pesticides are no longer effective. Additionally, it was discovered that most Aedes aegypti species in Central Java and the Yogyakarta Special Region were resistant to 0.05% lambda-cyhalothrin, 0.75% permethrin, 0.05% deltamethrin, and 0.5% etofenprox.

According to a published study collected in Indonesia, the Aedes aegypti mosquito has developed resistance to pesticides belonging to the organophosphate and pyrethroid families in dengue-endemic areas. Some groups that have experienced resistance include organophosphates, including malathion with a concentration of 5% and 0.8%, and the pyrethroid group, including alpha-cypermethrin with a concentration of 0.025%, deltamethrin with a concentration of 0.025%, and lambda-cyhalothrin with a concentration of 0.03%. The pyrethroid group is more resistant when measured against the overall mortality of Aedes aegypti mosquitoes based on article investigations of the two types of groupings.

3.1. Aedes aegypti mosquito resistance to organophosphate

Malathion can harm an insect's nervous system, such as a mosquito. Malathion permanently binds the cholinesterase enzyme in the nervous system of insects. Malathion is reportedly inexpensive, effective in halting the development of adult Aedes aegypti mosquitoes, economical, low-dose, and generally safe for humans [51]. It may also be used for thermal or cold fogging or fumigation. According to the research from the papers, some Indonesian provinces, including Sumatra, North Sulawesi, Bitung, Banjumas, Semarang, Bantul, and Sleman, are resistant to malathion. Mosquito resistance has been caused by exposure to malathion pesticides used in dengue control operations in Bitung Regency, and the general public utilizes domestic insecticides to prevent mosquito bites [34]. Malathion is used more often because fogging is preferred by users, allowing for frequent usage over a long period [16, 17]. The method for doing so on the -naphthyl acetate substrate increases non-specific esterase enzyme activity [27]. The voltage-gated sodium channel (VGSC) gene, which is linked to resistance to pyrethroid insecticides, is present. This is related to increased non-specific and non-specific esterase enzyme activity [33].

Because of metabolic detoxication enzymes, particularly esterases, Aedes aegypti is resistant to organophosphate pesticides. The active chemicals of insecticides that belong to the organophosphate family are synthetic and organic. Different kinds of organophosphate pesticides make up 30% of all insecticides. The primary mechanism of action of organophosphate insecticides is the suppression of acetylcholinesterase (AChE). AChE directs the hydrolysis of acetylcholine (ACH), which regulates hydrolysis in vesicles on axons near the synaptic cleft. After the impulse is transmitted, ACh and AChE hydrolyze into choline. In the absence of AChE, more ACh accumulates, disrupting impulse transmission, and causing decreased muscle coordination, convulsions, and eventual death. The electrophilic organophosphate substrate used by the AChE enzyme results in large quantities of ACh, which induce impaired motor coordination, convulsions, and, ultimately, death. However, it is vulnerable to insecticides because of a qualitative difference in esterases' capacity to hydrolyze Aedes aegypti more quickly than the Aedes sp. group. Two pathways that lead to resistance include excessive production and modifications in the catalytic properties of enzymes that are hypercatelectic to insecticides. Along with hydrolyzing the ester bonds, esterases also bind hard-to-hydrolyze organophosphates, such as those containing phosphate groups. Therefore, sequestration is not an ester hydrolysis resistance mechanism [52]. The chemical control plan must include ongoing monitoring of pesticide resistance in order to inform policymakers about the product's efficacy [53].

3.2. Aedes aegypti mosquito resistance to pyrethroids

Pyrethroids are artificial versions of pyrethrins, naturally occurring insecticidal esters of chrysanthemum acid classified as I and II based on their physical characteristics and toxicity [12]. To keep the action potential of the insect system constant, synthetic pyrethroid insecticides act by blocking ion channel axons. VGSC protein is the binding site for synthetic pyrethroids to regulate nerve impulses. As a result of received nerve impulses and resulting in continuous stimulation (seizures), insects will experience hyperexcitation (anxiety) and seizures [38]. It is this toxic effect of permethrin that kills these larvae. The 0.2% and 0.4% cypermethrin used showed resistance. The toxic effects of cypermethrin as a contact and
stomach poison induces larval death by entering the central nervous system and convulsions, and paralysis within minutes [31].

0.05% cypermethrin resistance was documented in several regencies/cities in the Central Java Province, including Semarang, Klaten, Kudus, and Gombong [14], [19], [23], [54], in addition to Pekanbaru [18]. Cypermethrin is reported to be tolerant in other parts of Indonesia, including Riau Islands, Malang, Makassar, and other towns and districts [21], [22], [24]. In Surabaya and Balikpapan, different situations have developed that make people more susceptible to lambda-cyhalothrin [32], [33]. Operational variables resulting from long-term use of cypermethrin cause the occurrence of resistance, tolerance, and sensitivity to pyrethroids [14], [18], [19], [23], [54]; dosages used above those supported by such long-term usage will result in resistance [55]. Operational parameters that affect the Aedes aegypti mosquito's sensitivity include technique, dosage, application time, and frequency [17].

Insects' central nervous systems can be reached by pyrethroids, which can pierce the chitin layer and lymph, causing paralysis due to the sensations they receive. Biological variables can also lead to circumstances of resistance. To quickly spread across the Aedes aegypti mosquito population, resistant mosquitoes will undergo genetic alterations and develop resistance gene [15]. These early indications of insecticide resistance will be crucial in helping to launch effective control measures that will prevent the development of mosquito resistance, such as rotating insecticides or adding a catalyst to increase the effectiveness of insecticides in Indonesian mosquito control programs [56]. Resistance incident strongly advise ongoing monitoring of insecticide resistance and prudent insecticide selection and use to manage the resistance phenomena [57]–[59].

3.3. Resistance of Aedes aegypti larvae to temephos

Temephos is an organophosphate insecticide that is effective for killing mosquito larvae; this is because temephos works by inhibiting enzymes in the insect nervous system [56], temephos that can damage the neurotransmitter system [60]. Temephos will block cholinesterase, causing neurological diseases. This situation happens when acetylcholine accumulates into choline and acetic acid, inhibiting the enzyme and preventing the breakdown of the acetylcholine that would otherwise result in the larva's death [61]. The esterase enzyme, which is more significant in Aedes aegypti, aids in the detoxification process. If the esterase enzyme's activity increases, a resistance mechanism occurs [62], [63]. Genetic, biological-ecological, and operational variables, circumstances for quick or slow resistance to emerge depending on how long and how frequently the pesticide is used, the number of mosquito breeding sites supplied with the treatment, and the incorrect dose are all potential causes of resistance [64], [65]. Some areas that experience resistance in Pesisir Selatan Regency, West Sumatra Province; this is due to the use of insecticides to eradicate mosquito nests coupled with the continuous use of pesticides as pesticides in agriculture [46], and it is present in endemic regions that have also seen temephos resistance in Kulon Progo Regency, Special Province of Yogyakarta (D.I Yogyakarta) [45] in Tegal Regency, Central Java Province [66]. The WHO-established criteria for resistance in these locations, which call for 80% mortality at a concentration of 0.02 ppm for both endemic and sporadic areas, are met [45].

Due to the use of temephos being appropriate given the amount of material and water in the water reservoirs and maximizing community empowerment through eliminating mosquito nests and 3M, several other regions in Indonesia reported whether endemic or non-endemic areas were still susceptible to the temephos [48]. This is because temephos is rarely used in Okus, Bombana, and Sleman Regencies since it is thought that it will alter the quality of the water and is dangerous for everyday usage [47], [50], [67]. The active ingredient's capacity to kill larvae, exposure time, the test circumstances for the larvae, temperature, and humidity all impact the sensitivity status of Aedes aegypti larvae to temephos [68]. Utilizing insecticides with diverse chemical structures and applying them in a rotation approach is crucial to limit the emergence of resistance [69]. Temephos can be used to combat the rise in dengue fever cases during the rainy season. Still, it is also important to be aware of the possibility of cross-resistance, which does not entirely rule out the possibility that Aedes aegypti larvae will become resistant to temephos alone but can also be accompanied by resistance to malathion or pyrethroids, making control more challenging [70]. Since dengue fever is endemic in most of Indonesia, efforts must be made to combat the disease through enhancing community empowerment and enlisting the political support of the local government for programs to destroy mosquito breeding grounds [69].

4. CONCLUSION

In DHF endemic areas, Aedes aegypti mosquitoes have developed resistance to pesticides from the pyrethroid and organophosphate families, according to a study of papers collected in Indonesia, including organophosphate groups such as malathion, pyrethroid groups such as cypermethrin and deltamethrin. The condition of resistance to Aedes aegypti is not only in endemic areas but also in metropolitan areas. If
pesticides are to be applied in susceptible and tolerant areas using an insecticide-type rotation plan and
recommended levels, they should be monitored and evaluated. In addition, there must be an expansion of the
community empowerment movement toward eradicating mosquito nests.

REFERENCES
Insecticide resistance of Aedes aegypti in Indonesia: a systematic review (Liena Sofian)


L. A. Muandibah, A. Santjaka, and M. Firdaus, “Exploration of Aedes sp mosquito resistance using the susceptibility method using 0.8% malathion insecticide and 0.03% lamdacyhalotrin (in Indonesia: Eksplorasi resistensi nyamuk Aedes sp dengan metode susceptibility menggunakan insektisida malathion 0,8% dan lamdacyhalotrin 0,03%),” Bulletin Keslingmas, vol. 38, no. 4, pp. 305–310, Dec. 2019, doi: 10.31983/keslingmas.v38i4.5471.


Insecticide resistance of Aedes aegypti in Indonesia: a systematic review (Liena Sofian)


**BIOGRAPHIES OF AUTHORS**

**Liena Sofiana** is a lecturer at the Faculty of Public Health, Universitas Ahmad Dahlan, Indonesia. She is a Ph.D. Candidate in public health, Universitas Diponegoro, Indonesia. Her area of expertise is epidemiology, communicable and non-communicable diseases, tropical medicine, tuberculosis, helminthiasis, juvenile delinquency, and health epidemiology services and healthcare associated infection (HAIs). She can be contacted at email: liena.sofiana@ikm.uad.ac.id.

**Rokhmayanti Rokhmayanti** is a Lecturer at the Faculty of Public Health, Universitas Ahmad Dahlan. Her focus is epidemiology, surveillance, outbreak investigation, and zoonosis. She can be contacted at email: rokhmayanti@ikm.uad.ac.id.

**Martini** Obtained an Engineer degree in Biology, from FMIPA IPB in 1991 and a Master's in Public Health at UNAIR Surabaya in 1999, and completed the Doctor of Medicine program at UNAIR in 2014. Currently active as a teacher Faculty of Public Health, Universitas Diponegoro, Indonesia. She teaches Standard and Advanced Epidemiology Methods, Laboratory of Epidemiology, Pesticides Application, and Partial Epidemiology. He is active in various research in the field of public health, and community service, and as a writer of scientific articles. Author of the Smart Book on Measles and Rubella Immunization, Getting to Know Complete Routine Immunization, Community-Based Surveillance Application for Dengue Hemorrhagic Fever (DHF) Control, and Dengue Fever Control Socialization Module with Modified Ovitrap. She can be contacted at email: martini@live.undip.ac.id.

**Dewi Ariyani Wulandari** is a lecturer at Public Health Study Program, STIKES Wira Husada, Yogyakarta, Indonesia. Her area expertise is policy of public health, epidemiology, communicable and non-communicable diseases, tuberculosis program, HIV/AIDS Program, quality of public health service and also health promotion and behavioral science. She can be contacted at email: dewiwalu02@gmail.com.
## APPENDIX

Table 1. Characteristics of studies on pesticide resistance in *Aedes aegypti* sp mosquitoes that were included in the research (continue)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Research design</th>
<th>Sample</th>
<th>Research result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14]</td>
<td>Mosquito Resistance as a Potential Vector of Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia</td>
<td>Jurnal Ilmu Kehidupan Tropis</td>
<td>Cross sectional</td>
<td>15-20 households in each hamlet in Semarang to use ovitraps to gather mosquito eggs</td>
<td><em>Aedes aegypti</em> mosquitoes' resistance to pyrethroids was 77.8% of 278 mosquitoes tested biochemically, based on observations of monoxygenase enzymes. <em>Aedes aegypti</em> and <em>Aedes albopictus</em> are resistant to pyrethroids. The findings demonstrated that <em>Aedes aegypti</em> at the Sultan Syarif Kasim II Airport and Sungai Duku Harbor region tolerated 0.05% cypermethrin. The <em>Aedes aegypti</em> mosquito population at Sultan Syarif Kasim II Airport and Sungai Duku Harbor was equally susceptible to 0.05% cypermethrin.</td>
</tr>
<tr>
<td>[15]</td>
<td><em>Aedes aegypti</em> mosquito resistance test against 0.05% cypermethrin at Sungai Duku harbor and Syarif Kasim II Airport Pekanbaru</td>
<td>SEHATI jurnal Kesehatan Vol. 1 No. 1:16-21</td>
<td>Cross sectional</td>
<td>250 mosquitoes</td>
<td>The <em>Aedes aegypti</em> mosquito population at Sultan Syarif Kasim II Airport and Sungai Duku Harbor was equally susceptible to 0.05% cypermethrin.</td>
</tr>
<tr>
<td>[16]</td>
<td>Susceptibility Status of <em>Aedes aegypti</em> Mosquitoes to Cypermethrin Insecticides in the Perimeter and Buffer Areas of Tanjung Emas Port, Semarang City</td>
<td>Jurnal Vektoral descripti</td>
<td>descriptive observation</td>
<td>240 Ae mosquitoes, seven officers, and three officers/cadres at the Bandarharjo Health Center are undertaking the vector control/fogging program.</td>
<td>The findings of program managers' interviews, all of the officers used the active ingredients of insecticides, malathion and cypermethrin appropriately to perform standards, operations, and fogging activities. Both kinds of pesticides have been applied alternately. The pesticide rotation, however, has yet to be done regularly. The death rate of test and control mosquitoes after being exposed to 0.05% lambda-cyhalothrin for 30 minutes served as the basis for the test results. It was noted how many of the 20 examined mosquitoes fell in the following time intervals: 1, 5, 10, 20, 30, and 1 hour. RT14 Prapatan Village, Balikpapan <em>Aedes aegypti</em> mosquito is resistant to 0.05% lambda-cyhalothrin.</td>
</tr>
<tr>
<td>[17]</td>
<td>Lambdacyhalothrin Resistance Test Against <em>Aedes aegypti</em> Mosquitoes in Seaport Areas</td>
<td>Jurnal Kesehatan Lingkungan</td>
<td>observation</td>
<td>20 <em>Aedes aegypti</em> mosquitoes in mature form</td>
<td>Insecticide X contains the active chemicals cypermethrin, transfluthrin, and importin; insecticide Y, transfluthrin; and insecticide Z, which has pyrethrin and cyfluthrin, are three types of insecticides that are commonly used on the market. Applying the pesticide on filter paper, the adult mosquitoes were subjected to each insecticide for an hour before being inspected the following day. According to WHO standards, mosquitoes with a death rate of less than 80% are resistant. Long-term continuous usage may be the cause of this tendency for resistance.</td>
</tr>
<tr>
<td>[18]</td>
<td>Resistance of <em>Aedes aegypti</em> to Insecticides: A Study on Household Insecticides</td>
<td>JIK Vol. 15 No. 2 Hal. 63-68</td>
<td>Cross sectional</td>
<td>450 mosquitoes</td>
<td>The death rate of test and control mosquitoes after being exposed to 0.05% lambda-cyhalothrin for 30 minutes served as the basis for the test results. It was noted how many of the 20 examined mosquitoes fell in the following time intervals: 1, 5, 10, 20, 30, and 1 hour. The RT14 Prapatan Village, Balikpapan <em>Aedes aegypti</em> mosquito is resistant to 0.05% lambda-cyhalothrin.</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of studies on pesticide resistance in *Aedes aegypti* sp mosquitoes that were included in the research (continue)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Research design</th>
<th>Sample</th>
<th>Research result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[19]</td>
<td>Resistance of <em>Ae. aegypti</em> against Cypermethrin in Klaten District, Central Java</td>
<td>Jurnal Kesehatan Lingkungan Ruwa Jurai Vol. 15 No. 1: 1-7</td>
<td>Observational</td>
<td>Ngawonggo Village, Kajen, Meger</td>
<td>All samples, ranging from moderate to resistant levels, showed cypermethrin resistance, according to the study's findings. Cypermethrin resistance was detected in samples from one subdistrict (89% mortality after 30 minutes). Moderate resistance was present in two more subdistricts, with 97% mortality after 30 minutes.</td>
</tr>
<tr>
<td>[20]</td>
<td>Exploration of the Degree of Resistance of <em>Aedes aegypti</em> Mosquitoes to Cypermethrin 0.05% Insecticides in Dengue Hemorrhagic Fever Cases in Kudus District in 2017</td>
<td>Keslingmas Vol. 37 No. 3: 240-404</td>
<td>Descriptive</td>
<td>Fifty homes with larvae were chosen from each of the sub-two district sub-districts.</td>
<td>Malang Regency's <em>Aedes aegypti</em> is resistant to 0.05% Cypermethrin, with mortality rates of 90% in Turen, Kepanjen, 96% in Karangploso, and 100% in Dau, with an average of 94%. This demonstrates that a concentration of 0.05% of Cypermethrin is still effective in lowering the growth of <em>Aedes aegypti</em>. However, the application rotation must still be considered to decrease the incidence of dengue.</td>
</tr>
<tr>
<td>[21]</td>
<td>Analysis of Resistance Status of <em>Ae. aegypti</em> to 0.05% Cypermethrin Insecticide in Endemic Districts, Malang Regency</td>
<td>Jurnal Ilmiah Biologi Vol. 10 No. 1: 240-251</td>
<td>Observational Descriptive</td>
<td>4 Districts, Turen, Kepanjen, Dau, and Karangploso</td>
<td>Malang Regency's <em>Aedes aegypti</em> is resistant to 0.05% Cypermethrin, with mortality rates of 90% in Turen, Kepanjen, 96% in Karangploso, and 100% in Dau, with an average of 94%. This demonstrates that a concentration of 0.05% of cypermethrin is still effective in lowering the growth of <em>Aedes aegypti</em>, but the rotation of application must still be taken into account to lower the incidence of dengue.</td>
</tr>
<tr>
<td>[22]</td>
<td>Susceptibility Test for Malathion and Cypermethrine (Cyf 50 EC) Insecticides on <em>Ae. aegypti</em> Mosquito Populations in Makassar City and Barru District</td>
<td>Higiene Vol. 4 No. 1: 41-47</td>
<td>Quasi experimental</td>
<td>900 female adult <em>Aedes aegypti</em> mosquitoes, 35 days old</td>
<td>Results for cypermethrin (Cyf 50 EC) 1.5% were 17.95 minutes, 29.42 minutes, 32.67 minutes, and 38.77 minutes; results for 328.87 minutes (5 hours), 1639.06 minutes (27 hours), 2196.94 minutes (37 hours), and 3243.43 minutes (54 hours). Malathion insecticide produced 25.18 minutes, 55.37 minutes, 63.93 minutes, and 79.99 minutes in the Barru District, whereas cypermethrin (Cyf 50 EC) 1.5% produced yields of 21.77 minutes, 41.76 minutes, 47.42 minutes, and 58.05 minutes. With three replications, the test mosquitoes' average mortality resulted in a yield percentage of 67%. When mosquito mortality falls below 80%, the mosquito is considered inefficient or resistant to the pesticide Cypermethrin 15 ml.</td>
</tr>
<tr>
<td>[23]</td>
<td>Efficacy of Cypermethrin Type Insecticide Against <em>Aedes aegypti</em> Mosquitoes in the Fogging Program at PKU Muhammadiyah Gombong Hospital</td>
<td>Buletin Kesehatan Lingkungan Masyarakat, Vol. 40 No. 3:126-135</td>
<td>Exploration with a quantitative approach</td>
<td>10 <em>Aedes aegypti</em> mosquitoes</td>
<td>All samples, ranging from moderate to resistant levels, showed cypermethrin resistance, according to the study's findings. Cypermethrin resistance was detected in samples from one subdistrict (89% mortality after 30 minutes). Moderate resistance was present in two more subdistricts, with 97% mortality after 30 minutes.</td>
</tr>
<tr>
<td>[24]</td>
<td>Susceptibility Status of <em>Aedes aegypti</em> Mosquitoes to Cypermethrin Insecticide at Tanjung Balai Karimun's port in Riau Archipelago Province</td>
<td>Jurnal Ilmiah Biologi Vol. 8 No.6: 752-756</td>
<td>Descriptive</td>
<td>240 mature mosquitoes of the first generation.</td>
<td>Aedes aegypti mosquitoes from Tanjung Balai Karimun's port demonstrated that they remained vulnerable to cypermethrin pesticides in the buffer and perimeter areas, respectively, by 98.75% and 100%.</td>
</tr>
</tbody>
</table>

*Insecticide resistance of *Aedes aegypti* in Indonesia: a systematic review (Liena Sofian)*
Table 1. Characteristics of studies on pesticide resistance in *Aedes aegypti* sp mosquitoes that were included in the research (contine)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Research design</th>
<th>Sample</th>
<th>Research result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25]</td>
<td>The Effect of Deltacyhalothrin on the Resistance Status of <em>Aedes aegypti</em> in the Buffer Area of Juanda International Airport, Surabaya Rural Dengue Strain</td>
<td>Journal of Public Health Science Research Vol. 3 No. 1: 1-9</td>
<td>experimental analytics</td>
<td>150 mosquitoes</td>
<td>Based on calculations made from the test findings, 98.67% of the examined mosquitoes died after being corrected, completing the degree of susceptibility of <em>Aedes aegypti</em> in the Juanda International Airport's buffer zone in Surabaya susceptible by WHO standards.</td>
</tr>
<tr>
<td>[26]</td>
<td><em>Aedes aegypti</em> vector resistance status on malaion and activity of non-specific esterase enzymes in Tembalang district, Semarang city</td>
<td>Jurnal Kesehatan Masyarakat Indonesia, Vol. 15 No. 1: 6-9</td>
<td>Cross sectional</td>
<td>20 houses</td>
<td>The kind of <em>Aedes aegypti</em> is determined by the findings of watching the larvae in the Batursari Village Area RW 30, RW 3, and RW XX. Mosquito fainting happened on average every 2.8 minutes after exposure to 5% malaion. For all locations with 5% Malathion, mortality is at 100%.</td>
</tr>
<tr>
<td>[27]</td>
<td>Resistance Status of <em>Aedes aegypti</em> Mosquitoes to Malathion and Ace-1 Gene Mutations in Ambon City</td>
<td>Jurnal Kedokteran dan Kesehatan Indoensia Vol. 10 No. 3:215-221</td>
<td>Cross sectional</td>
<td>480 houses</td>
<td>According to the bioassay, the death rate of <em>Aedes aegypti</em> in 12 villages in the Tembalang District ranged from 0 to 62% after 24 hours of testing with impregnated paper. In Rowosari, Kedungmuncu, Sambiroto, and Meteseh, the mechanism of resistance that increased non-specific esterase enzyme activity in -naphthyl acetate was not observed; however, it started to appear in low percentages (15%) in Sendang Mulyo, Tondang, Sendanggubo, and Bubusan, and average rates (45-75%) in Tembalang, Jangli, and Mangunharjo. <em>Aedes aegypti</em> in Kramas exhibits the mechanism of high esterase enzyme activity with AV0.700-0.900 with a percentage of 20% and AV0.900 with a rate of 80%.</td>
</tr>
<tr>
<td>[28]</td>
<td>Entomology Survey, Susceptibility of <em>Aedes aegypti</em> to Organophosphate Insecticides, and VGSC Gene Identification in Dusun Malangrejo, Sleman Yogyakarta</td>
<td>Aspirator Vol. 11 No. 1: 37-44</td>
<td>Cross sectional</td>
<td>100 mosquitoes</td>
<td><em>Aedes aegypti</em> mosquitoes from the Waihaong and Rijali Health Centers had no alterations in the ace-1 gene. Two health facilities in Ambon City have been classed as having tolerant <em>Aedes aegypti</em> mosquito resistance, while 14 additional health centres have been categorised as having susceptible resistance. At the Waihaong and Rijali Public Health Centers in Ambon City, there is no evidence of the ace-1 gene in <em>Aedes aegypti</em> mosquitoes.</td>
</tr>
<tr>
<td>[29]</td>
<td>Resistance Status of the <em>Aedes</em> sp Mosquito Against Malathion in Papkalan Village, Minahasa Regency</td>
<td>JKL Vol. 9 No. 1: 56-61</td>
<td>Observational Descriptive approach</td>
<td>25 mosquitoes</td>
<td>The kind of <em>Aedes</em> sp. mosquito may nest in bathtubs. Malathion resistance was 13.75%, whereas <em>Aedes aegypti</em> remained tolerable to temefos (95.4%). Biological and biochemical experiments demonstrate the possibility of pesticide resistance, which is linked to enhanced non-specific esterase enzyme activity. Both the genes (V1016G; S989P) and F1534C produced promising findings for the VGSC gene identification. <em>Aedes aegypti</em> mosquitoes die at a rate of 8% to 16% within the first hour of the measurement. At the same time, a 24-hour measure shows a yield of 64%–76% of the death of <em>Aedes</em> sp. mosquitoes, with an average of 9% mortality. Malathion usage for an extended period results in resistance to</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of studies on pesticide resistance in Aedes aegypti sp mosquitoes that were included in the research (cont)uene

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Research design</th>
<th>Sample</th>
<th>Research result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>Correlation of Entomological Index to Aedes aegypti Susceptibility in Six Types of Insecticides in Seven Provinces of Sumatra Region</td>
<td>Jurnal Ekologi Kesehatan Vol. 18 No. 2:70-79</td>
<td>Cross sectional</td>
<td>100 houses</td>
<td>The highest HI and CI values were found in Pematang Siantar City (58.60% and 64%). In comparison, the lowest values were located in Prabumulih Regency and Palembang City (22.70% and 0%), the highest BI was found in West Bangka Regency (87.40%), the lowest in Metro City (31.10%). The highest ABJ was located in Palembang City (77.30%) and the weakest in Pematang Siantar City.</td>
</tr>
</tbody>
</table>
The independent T-Test statistic test, which had a significance value of 0.565, revealed no difference between the two villages in terms of the esterase enzyme content in mosquito bodies, indicating that *Aedes* sp. mosquitoes in both villages had essentially the same exposure to organophosphate and pyrethroid insecticides. According to the study, 8.33% of *Aedes* sp. mosquitoes in Kedungrandu Village were determined to be resistant to organophosphate class pesticides, whereas Sidamulih Village had 1.36% more tolerable insects than Kedungrandu Village.

The findings indicated that 50 (49%) districts were resistant to temephos, 30 (29%) districts were tolerant, and 22 (22%) districts were sensitive. The sensitivity of *Aedes* aegypti to temephos was 0.02%. One district (1%), according to the findings of the 0.05% cypermethrin pesticide test, was tolerant, whereas 100 (98%) districts were resistant. According to test results on alpha-cypermethrin 0.025%, 4 (9%) districts were sensitive, 18 (40%) districts were tolerant, and 23 (51%) districts were resistant. Deltamethrin 0.025% test findings showed 14 (14%) susceptible districts, 22 (22%) tolerant districts, and 66 (65%) resistant districts.

The Banyuwangi Regency's *Aedes* aegypti mosquito is resistant to 0.8% malathion and 0.25% cypermethrin. In Banyuwangi Regency, a gene encoding VGS1 with a 250 bp band was discovered using the polymerase chain reaction (PCR) method. This gene is linked to resistance to pyrethroid (cypermethrin) and organophosphate (malathion) pesticides in *Aedes aegypti* mosquitoes.
## Insecticide resistance of Aedes aegypti in Indonesia: a systematic review (Liena Sofian)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Research design</th>
<th>Sample</th>
<th>Research result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrethroid Group Insecticides in North Sumatra and Jambi Provinces</td>
<td>Entomology Indicators and Resistance Status of Aedes aegypti Larvae and Mosquitoes to Household Insecticides in Three Regencies/Cities in West Sumatra Province</td>
<td>Jurnal Vektor Penyakit Vol 13 No. 2 97-106</td>
<td>Cross sectional</td>
<td>100 houses in the working area of 3 health centers, 300 houses in 1 province and 900 districts/cities</td>
<td>Malathion and cypermethrin are two insecticides that are often used in both provinces. According to the study's findings, dengue fever control programs in North Sumatra and Jambi provinces can employ alpha-cypermethrin as a substitute pesticide since it is still efficient at combating Aedes aegypti.</td>
</tr>
<tr>
<td></td>
<td>Status of the Susceptibility of Aedes aegypti Mosquitoes to Malathion 5% and Alpha-cypermethrin 0.025% in the Work Area of the Belimbing Health Center, Kuranji District, Padang City</td>
<td>Jurnal Kesehatan Andalas Vol. 9 No. 1 22-28</td>
<td>Experimental</td>
<td>140 Aedes aegypti mosquitoes</td>
<td>The monitoring entomology indicators are still in the moderate range. The mosquito breeding environment consists of disposal containers that are positive for larvae at a rate of 9.94% and control containers that are positive for larvae at a rate of 90.27%. Deltamethrin and alphacypermethrin, two commonly used insecticides, still exhibited sensitivity and tolerance, respectively, but malathion, Lambdacyhalothrin, and cypermethrin were resistant. The south coast and Bukit Tinggi were resistant to the larvicide temephos, which controls larvae. After 24 hours, 98% of Aedes aegypti mosquitoes were killed with 5% malathion, with LT50 and LT90 being 76 and 853 minutes, respectively. After 24 hours, 0.025% alpha-cypermethrin killed 87% of Aedes aegypti mosquitoes, with LT50 and LT90 being 264 and 1500 minutes, respectively.</td>
</tr>
<tr>
<td></td>
<td>Resistance Status of Aedes aegypti to 0.8% Malathion and 0.05% Cypermethrin at Pulau Baai Port, Bengkulu City</td>
<td>Jurnal Kesehatan masyarakat Vol. 8 No. 2: 243-249</td>
<td>Quasi Experimental</td>
<td>408 female mosquitoes</td>
<td>The average death rate of Aedes aegypti mosquitoes in the perimeter region and the buffer port of Baai Island did not differ, according to the study of Aedes aegypti mosquito mortality data using an independent t-test. Aedes aegypti mosquitoes living on the island of Baai Harbor were resistant to 0.8% malathion and 0.05% cypermethrin (death 90%), according to the results of the susceptibility investigation. According to the findings of the interviews with respondents, 79% of families used pyrethroid pesticides, and 83.87% of respondents used insecticides overall. Type 53.78%, fuel 20.17%, lotions 21.85%, pesticide sprays, and mosquito netting were utilized by responders.</td>
</tr>
<tr>
<td></td>
<td>Exploration of Aedes sp Mosquito Resistance with Susceptibility Method Using Malathion 0.8% and Lambdacyhalotrin 0.03% Insecticides</td>
<td>Kesehatan Lingkungan Masyarakat Vol. 38 No. 4: 305-364</td>
<td>exploration</td>
<td>every house where there are larvae and eggs of Aedes sp mosquitoes with a distance of 100 meters from the case index house in each cardinal direction</td>
<td>Malathion insecticide 0.8% revealed a mortality rate of 8.75% in Kedungbaru Village, Patikraja District, and 15% and 11.25% in Sidamulih Village. At the same time, Lambdacyhalotrin 0.03% in Sidamulih Village is 92.5% and 100% in Kedungbaru Village, respectively.</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Journal</td>
<td>Research design</td>
<td>Sample</td>
<td>Research result</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>[45]</td>
<td>Resistance Status of Dengue Virus Serotype in <em>Aedes aegypti</em> on the Exposure of Insecticide Temefos and Cypermethrin</td>
<td>Jurnal Ilmu Kesehatan</td>
<td>Observational analitik kasus kontrol</td>
<td>There were 25 <em>Aedes</em> F1 female larvae and <em>aegypti</em> adult larvae.</td>
<td>Wonosusi Lor and Dipan, both Gadingan endemic areas, are still entirely vulnerable to temefos. Sporadic places like Driyan, which has a Mortality Rate (AK) of 100%, are in a vulnerable position, whereas Durungan and Kriyanan are in a tolerant status (AK=88% and 97%). Potentially susceptible locations include Kauman and Janten (AK=100% and 98%), whereas Panjatan is classified as tolerable (AK=84%). All endemic, sporadic, and prospective regions are 80% or more resistant to the pesticide cypermethrin.</td>
</tr>
<tr>
<td></td>
<td>Entomology Survey, Mayan Index, and Susceptibility Status of <em>Aedes aegypti</em> Mosquito Larvae to Temefos</td>
<td>Jurnal Kesehatan</td>
<td>Cross sectional</td>
<td>100 houses</td>
<td>Obtained a high-density value (HI) of 57%, 22.04% CI and 123% BI with a value of DF 7. With a total of 558 containers, the CS value of 77.42% was more significant than the DS value of 22.58%. Ninety-three buildings with low risk and seven houses with medium risk were found using the Maya index. Resistance was discovered during a Temephos 0.012 susceptibility test.</td>
</tr>
<tr>
<td>[46]</td>
<td>The Resistance Status of <em>Aedes aegypti</em> Larvae to Temefos in Depok, Sleman, Yogyakarta</td>
<td>Indonesian Journal of Pharmacology and Therapy</td>
<td>Experimental</td>
<td>Instar 3 <em>Aedes aegypti</em> larvae obtained from RW 9 and 10 Minomartani Village</td>
<td>This 0.02 ppm was administered to the treatment group for 24 hours. The study is reported as a percentage of larval mortality and resistance categories based on WHO recommendations. In RW 9, 100% of <em>Aedes aegypti</em> larvae were present, compared to 97% in RW 10. Temephos is still effective against <em>Aedes aegypti</em> larvae in Depok District, Sleman, at a level of 0.02 ppm. The results of the tests, which were conducted six times, revealed that the status of larva larvae for 1GR bats (temefos) is still susceptible according to the Permenkes Regulation No. 50 of 2017 and 1975 WHO standards. The reasons and fundamental factors to ascertain the condition of the <em>Aedes aegypti</em> vector for the use of temefos are based on the situation as a DHF endemic area and the control efforts that have been made using larvicides within a specific time frame. The results obtained can be used to determine techniques and subsequent control measures.</td>
</tr>
<tr>
<td>[47]</td>
<td>Resistance status of <em>Aedes aegypti</em> larvae to the use of Temefos in DHF endemic areas in Maros Regency in 2020</td>
<td>Jurnal Sululipu: Media Komunikasi</td>
<td>Experimental</td>
<td>endemic area of Maros Regency</td>
<td>The larvicidal test revealed that all larvae exposed to Temephos 0.02 ppm perished, with results of HI: 35, CI: 14.1 and BI: 55. These calculations show that the vector density is at a moderate intensity and that Temephos sensitivity is still there. The percentage of larval death after 24 hours was 100% in all five hamlets. This study demonstrates that <em>Aedes</em> spp. Larvae are still sensitive to the temefos insecticide dosage of 0.02 ppm. Based on WHO larval susceptibility status criteria, <em>Aedes</em> spp. are still vulnerable if the death rate of the larvae is 98–100%. The one-sample T-test findings yielded a value of p=0.00. Larvae of <em>Aedes aegypti</em> died at a rate of 0.025 ppm at 90%. At LC50 of 0.0005 ppm and LC90 of 1.1037 ppm, permethrin kills <em>Aedes aegypti</em> at a 26% rate at each concentration. L50 was at 661.636 minutes, and LTT99 was at 5958807.272 minutes. Susceptibility of the larvae may not be</td>
</tr>
<tr>
<td></td>
<td>Density and Vulnerability Status of <em>Aedes aegypti</em> Larvae in Pancur Pungah Village, Muara Dua District, Okus Regency in 2019</td>
<td>Jurnal Kedokteran dan Kesehatan</td>
<td>Observational descriptive</td>
<td>100 houses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Susceptibility Status of <em>Aedes sp</em> Larvae to Organophosphate Insecticides in East Palembang District</td>
<td>Indonesian Journal for Health Sciences</td>
<td>Quasi</td>
<td>625 larva <em>Aedes aegypti</em> 625 <em>Aedes aegypti</em> larvae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Vulnerability of the <em>Aedes aegypti</em> Mosquito in the Tegal Dengue Endemic Area, Central Java</td>
<td>BALABA</td>
<td>Experimental</td>
<td>100 houses</td>
<td></td>
</tr>
</tbody>
</table>