Spatial-Temporal Distribution of Dengue in Banjarmasin, Indonesia From 2016 to 2020

Nur Afrida Rosvita, Nia Kania, Eko Suhartono, Adi ‪Nugroho, Erida Wydiamala


Dengue Hemorrhagic Fever (DHF) is an acute febrile disease caused by four serotypes of dengue virus (DENV) and transmitted by the Aedes aegypti mosquito. This article aims to analyze monthly trends in cases and climates as well as spatial analysis and autocorrelation in 52 urban villages of Banjarmasin City. Laboratory-confirmed dengue cases from 2016 to 2020 were analyzed for trends in malaria cases. Decomposition analysis was performed to assess seasonality. The annual spatial grouping of incidents, identified by Moran's I. The Result shows the annual dengue incidence fell significantly to 72% in 2017 and lasted until 2020. Dengue infection is more common in men with an age range of 15-64 years. The monthly dengue season is highest from January to May along with increased rainfall. The high incidence is spatially clustered which is identified in the east and borders neighboring districts, especially 6 urban villages. A trend and spatially explicit decision support system are needed to support surveillance and control programs in identified high-risk areas to succeed in dengue eradication goals.


V. Choumet and P. Desprès, “Dengue and other flavivirus infections,” Rev Sci Tech, vol. 34, no. 2, pp. 472–473, 2015.

Kemenkes, “laporan Kasus Demam Berdarah di Indonesia,” Jakarta, 2020.

Health Office of Banjarmasin, Dengue Case in Banjarmasin City 2016-2020. Banjarmasin, Indonesia, 2021.

C. W. Morin, A. C. Comrie, and K. Ernst, “Climate and dengue transmission: evidence and implications,” Environ. Health Perspect., vol. 121, no. 11–12, pp. 1264–1272, 2013.

F. Ding, J. Fu, D. Jiang, M. Hao, and G. Lin, “Mapping the spatial distribution of Aedes aegypti and Aedes albopictus,” Acta Trop., vol. 178, pp. 155–162, 2018.

B. W. Alto and D. Bettinardi, “Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages,” Am. J. Trop. Med. Hyg., vol. 88, no. 3, p. 497, 2013.

A. Sumi, E. F. O. Telan, H. Chagan-Yasutan, M. B. Piolo, T. Hattori, and N. Kobayashi, “Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines,” Epidemiol. & Infect., vol. 145, no. 1, pp. 78–86, 2017.

N. A. Pascawati, T. B. T. Satoto, T. Wibawa, R. Frutos, and S. Maguin, “Dampak Potensial Perubahan Iklim Terhadap Dinamika Penularan Penyakit DBD Di Kota Mataram,” Balaba J. Litbang Pengendali. Penyakit Bersumber Binatang Banjarnegara, pp. 49–60, 2019.

M. R. Ridha, L. Indriyati, A. Tomia, and J. Juhairiyah, “Pengaruh Iklim Terhadap Kejadian Demam Berdarah Dengue Di Kota Ternate,” SPIRAKEL, vol. 11, no. 2, pp. 53–62, 2019.

A. Kurniadi and S. Sutikno, “Analisis Spasial Persebaran dan Pemetaan Kerawanan Kejadian Kasus Demam Berdarah Dengue di Kabupaten Lumajang dengan Spatial Pattern Analysis dan Flexibly Shaped Spatial Scan Statistic,” J. Sains dan Seni ITS, vol. 7, no. 2, pp. 32–39, 2018.

A. P. Kusuma and D. M. Sukendra, “Analisis spasial kejadian demam berdarah dengue berdasarkan kepadatan penduduk,” Unnes J. Public Heal., vol. 5, no. 1, pp. 48–56, 2016.

M. R. Naim et al., “Spatial-temporal analysis for identification of vulnerability to dengue in Seremban district, Malaysia,” Int. J. Geoinformatics, 2014.

W. P. Cleveland and G. C. Tiao, “Decomposition of seasonal time series: a model for the census X-11 program,” J. Am. Stat. Assoc., vol. 71, no. 355, pp. 581–587, 1976.

P. A. P. Moran, “Notes on continuous stochastic phenomena,” Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950.

L. Anselin, “Local indicators of spatial association LISA,” Geogr. Anal., vol. 27, no. 2, pp. 93–115, 1995.

L. Anselin, I. Syabri, and Y. Kho, “GeoDa: an introduction to spatial data analysis,” in Handbook of applied spatial analysis, Springer, 2010, pp. 73–89.

L. M. Scott and M. V Janikas, “Spatial statistics in ArcGIS,” in Handbook of applied spatial analysis, Springer, 2010, pp. 27–41.

J. Sun et al., “Epidemiological trends of dengue in mainland China, 2005--2015,” Int. J. Infect. Dis., vol. 57, pp. 86–91, 2017.

B. Chen and Q. Liu, “Dengue fever in China,” Lancet, vol. 385, no. 9978, pp. 1621–1622, 2015.

A. H. Mohd-Zaki, J. Brett, E. Ismail, and M. L’Azou, “Epidemiology of dengue disease in Malaysia (2000--2012): a systematic literature review,” PLoS Negl. Trop. Dis., vol. 8, no. 11, p. e3159, 2014.

L. Bravo, V. G. Roque, J. Brett, R. Dizon, and M. L’Azou, “Epidemiology of dengue disease in the Philippines (2000--2011): a systematic literature review,” PLoS Negl. Trop. Dis., vol. 8, no. 11, p. e3027, 2014.

L. A. Villar, D. P. Rojas, S. Besada-Lombana, and E. Sarti, “Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review,” PLoS Negl. Trop. Dis., vol. 9, no. 3, p. e0003499, 2015.

P. Sirisena, F. Noordeen, H. Kurukulasuriya, T. A. Romesh, and L. Fernando, “Effect of climatic factors and population density on the distribution of dengue in Sri Lanka: a GIS based evaluation for prediction of outbreaks,” PLoS One, vol. 12, no. 1, p. e0166806, 2017.

S. Polwiang, “The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017),” BMC Infect. Dis., vol. 20, no. 1, pp. 1–10, 2020.

L. Xu et al., “Climate variation drives dengue dynamics,” Proc. Natl. Acad. Sci., vol. 114, no. 1, pp. 113–118, 2017.

W. Roseghini, F. Mendonça, and P. Ceccato, “Urban climate and dengue epidemics in Brazil,” Urban Clim. Lat. Am., pp. 309–328, 2019.

N. Nuraini, I. S. Fauzi, M. Fakhruddin, A. Sopaheluwakan, and E. Soewono, “Climate-based dengue model in Semarang, Indonesia: Predictions and descriptive analysis,” Infect. Dis. Model., vol. 6, pp. 598–611, 2021.

K. L. Ebi and J. Nealon, “Dengue in a changing climate,” Environ. Res., vol. 151, pp. 115–123, 2016.

S. J. Gan et al., “Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review,” Parasites and Vectors, vol. 14, no. 1, pp. 1–19, 2021.

Y. Chen et al., “Spatiotemporal transmission patterns and determinants of dengue fever: A case study of Guangzhou, China,” Int. J. Environ. Res. Public Health, vol. 16, no. 14, 2019.

H. Salje et al., “Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size,” Science (80-. )., vol. 1306, no. March, pp. 1302–1306, 2017.

T. D. Vermeulen, J. Reimerink, C. Reusken, S. Giron, and P. J. de Vries, “Autochthonous dengue in two Dutch tourists visiting Département Var, southern France, July 2020,” Eurosurveillance, vol. 25, no. 39, p. 2001670, 2020.



  • There are currently no refbacks.

International Journal of Public Health Science (IJPHS)
p-ISSN: 2252-8806, e-ISSN: 2620-4126

View IJPHS Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.