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 Low birth weight (LBW) is a significant public health problem in the world. It 
was estimated globally by the World Health Organization (WHO) that prevalence 

of LBW was 15% of all births. In Murung Raya district LBW cases remain high. 

This paper aimed to identify and discuss the relationship between environmental 

risk factors with LBW in Murung Raya.A spatial analysis was conducted with 
150 women as the total participantswho were recruited through the incidence data 

in 2013-2014. The questionnaires, medical records, and geographic data were 

measured by Stata software, ArcGis, SatScan, and Geoda. The study results 

indicated there was significant correlation between health behavior and 
environmental variables with the strength of external neighborhood effect across 

LBW risk factors. More intense clustering of high values (hot spots) was 

found through the spatial analysis showing that most of the cases were 

located near the defined buffer zone. This research demonstrates that the 

spatial pattern analysis provided greater statistical power to detect an effect 

that was not apparent in the previous epidemiology studies. 
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1. INTRODUCTION 

Newborns with LBW (<2,500 grams) develop slowly mostly having poor health outcomes and 

approximately 20 times greater risk to die than heavier babies. There are more than 20 million newborns 

worldwide and the level of LBW in developing countries was16.5%, which is more than twice the rate in 

developed countries.The level of LBW in Indonesia in 2013 was 10.2%. It has not decreased to expected rates. 

While in Murung Raya, Central Kalimantan, Indonesia,the rate of LBW was 9.5% in 2013, and it has 

increased to 10.6 % steadily since 2014 [1]. This fact suggests that LBW remains a challenging public health 

issue in both the national and district levels. 

Beside maternal history of previous delivery, other widely identified risk factors of LBW are 

environment and behavioral factors [2]. The identification of clusters, buffer zones, autocorrelation, nearest 

neighbor, and Getis-ord General G with higher LBW risk can hypothesize the pattern, function, and effect of 

risk and disease etiology [3]. However, the association between spatial patterns with personal and social risk 

factorswith LBW is difficult to establish because the exposure of determinants can occur at any level over a long 

time period making difficult the determination ofcausal relationships.  

This study is spatial analysis as a set of methods useful when the data are spatial [4], for all 

manipulations of spatial data carried out to improve one understanding of the geographic phenomena that 

data represents [5], normally have spatial analysis tools for feature statistics or geoprocessing, with the types 
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are used vary according to subject areas [6]. The studyof spatial analysis of LBW in Murung Raya has never 

been done before. This study aims to find out the relationship between environment and health behavior 

determinants of LBW by spatial analysis. Murung Raya district was classified into several sub districts based 

on their level area to examine the potential area disparity in LBW rates.  

The outcomes gleaned from this study are necessary to providespatial data of LBW in Murung Raya 

and to identify the relation between the variables of area and health behavior as risk factors of LBW to better 

establish theframework for planning health promotion programs, prevention and intervention activities 

targeted to specific geographic regions and high-risk populations in Indonesia. 

 

 

2. RESEARCH METHOD 

2.1. Study design 

This study used spatial analysis study designs. It was conducted from August to December 2015 in 

six sub-districts of Murung Raya, i.e Murung, Tanah Siang Selatan,Sei Babuat, Seribu Riam, Tanah Siang, 

and LaungTuhup. The survey instruments used for this research included questionnaires as primary data, with 

medical records, geographic data, and reports of mercury pollution as secondary data. The total numbers of 

participants, 150 women were matched with age, parity and residence. They were recruited at the primary 

local health center at Puskesmas through a record search among the data charts from 2013-2014, with 

inclusive criteria for 75 women with LBW delivery as the study case group and 75 with normal delivery as 

the control group. Incidence of LBW was measured by Poisson Regression, Spatial Autocorrelation (Global 

Moran's I), Getis-ord General G (z score Gi), Average Nearest Neighbor tool (NNI tests), the space-time 

permutation model, buffer (analysis), and diagnostics for spatial dependence. Spatial statistic studies examining 

LBW were done using software Scan Statistics, Geoda, Arcgis, and Stata. 

 

2.2. Sample and data collection 

Sample of this study was the mother with live birth inMurung Raya District.The inclusion criteria of 

the subjects were all live births listed in Health Department of Murung Raya District’s database 2013-2014. 

The database was compared with the data of the primary health center and the midwive’smedical records. 

There were 150 subjects included in this study. The number of case-control was 75 LBW and75 controls. 

Types of matching criteria included age, parity, and resident. The case criterion was mothers with babies with 

live birth weight <2,500 gram and the control criterionwas with live birth weight ≥2,500 grams.  

 

2.3. Measurement 

Data about health behavior determinants, i.e Traditional Birth Attendant(TBA) care, Ante Natal Care 

(ANC), drinking popa (10-17 % alcoholic Dayak’s ethnic traditional beverage, was made by fermented rice for a 

ritual ceremony drinking) [7], smoking, and accessibility to primary health care facilities were obtained from 

interviewing themothers. Environmental determinants were slope surface, altitude, and mercury exposure. 

 

2.4. Statistical analysis 

The descriptive analysis involved matching of age, parity, and residency. Poisson regression 

analysis for Incidence Rate Ratio (IRR) with significance level at p <0.05 was performed with Stata version 

12. The scan statistical method based on the discrete Poisson probability model was employed in this study to 

detect district clusters of high of LBW rates [8]. GeoDa was used to find out Moran Inndex/Degree of 

Freedom (MI/DF) through the diagnostic of spatial dependence [9], ArcGis provided measures of Spatial 

Autocorrelation (Global Moran's I), Getis-ord General G (z score Gi), Average Nearest Neighbor tool (NNI tests), 

and Buffer (Analysis) [10]. Data was further analyzed with Poisson regression IRR tests for significant 

statistical correlations. 

 

 

3. RESULTS AND ANALYSIS 

3.1. Results 

 

3.1.1. Descriptive statistics 

Descriptive analysis of characteristics of mother with sample matching age, residence, and parity 

was found with sum of samples 75 LBW and 75 control were adequate TBA care total 32 cases (82.05%) and 

7 controls (17.95%), inadequate ANC 33 cases (71.74%) and 13 controls (28.26%), drinking popa with total 

cases 16 (84.21%) and control 3 (15.79%), smoking 21 (82.21%) and controls 9 (30%), and difficult 

accessibility total cases 63 (55.75%) and controls 50 (44.25%). The characteristics of the mothers with 

environment variables based on slope surface involved most of the cases with under slope surface <2% total 
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50 (66.67%) and slope surface 6-10% only 4 (5.33%). Most cases involved variable altitude <60 meter with 

47 (62.67%), and >500 were 3 (4%). The variable mercury exposure was at level 0.0144/0.0172 about 24 

(16%), and at level > 0.0425 were 4 (2.67%). Based on the altitude, most of mothers tended to live at lower 

altitudes <60 meter were 47 (%), and a few at the highest altitude >500 meter were 3 (4%). Acoording to 

slope surface data most of the residents of the cases were <2%= 50 (66.67%), 2-4%= 16 (21.33%), 4-6%= 

5(6.67%) and 6-10%=4 (5.33%). 

 

3.1.2. Spatial autocorrelation 

The result of global spatial autocorrelation was based on proximity factors between each sub-

districts’ estimated linkages to LBW rate. To determine the relationship between sub districts linkages used 

global autocorrelation with five categories MI. The number of LBW in Murung Raya sub districts was 

obtained in Tanah Siang Selatan/Sei Babuat MI= 0.759, Laung Tuhup MI= 0.315, Saripoi MI=0.2, and 

Murung MI=1.008, p < 0.05 and were found by Moran’s Index to be positive, with only in Seribu Riam 

MI= 0.470 tended to be random. Spatial autocorrelation for variables ANC, TBA care, drinking popa, 

smoking and accessibility were all clustered as shown in Table 1. This patterning indicated the presence of 

spatial autocorrelation within neighboring areas were more similar (positive) than expected resulting in non-

random clustering. 
 

 

Table 1. The Results of Spatial Autocorrelation with ArcGIS Case of LBW  
Variabel Moran's Index (I) Expected Index (EI) z-score p-value exp. 

ANC 0.514 -0.016 14.595 0.000 clustered 

TBA care 0.439 -0.011 14.786 0.000 clustered 

Drinking popa 0.558 -0.056 4.967 0.000 clustered 

Smoking 0.587 -0.036 5.535 0.000 clustered 

Accessibility 0.505 -0.009 19.127 0.000 clustered 

 

 

3.1.3. Getis-ord General G Analysis 

Spatial analysis used Getis-ord General G Analysis. In the districts Murung z(G)= 0.007 and Seribu 

Riam p> 0.05, the positive z-score showing low values tended to be random in the areas of research, 

contrasting with the sub districts Tanah Siang Selatan/Sei Babuat z(G)= 0.114 that tended to be low 

clustered. Tanah Siang z(G)= 0.436 and Laung Tuhup z(G)= 0.822, p < 0.05 showed high values and tended 

to be high clustered. Spatial analysis used Getis-ord General G Analysis for variables ANC, TBA care, 

drinking popa, smoking and accessibility were all high clustered as shown in Table 2. 
 

 

Table 2. The Results of The Analysis of Spatial Statistical Models Getis-Ord General G with ArcGIS 
Variable Observed General G Expected General G z-score p-value Exp. 

ANC 0.230  0.230  3.017  0.003 High Clustered 

TBA care 0.175 0.175 3.926  0.00008 High Clustered 

Drinking popa 0.211 0.211 2.636  0.008 High Clustered 

Smoking 0.145  0.145  1.913  0.056 High Clustered 

Accessibility 0.152  0.152  4.336 0.00002 High Clustered 

 
 

3.1.4. Nearest Neighbor Analysis  

To identify the distance among cases LBW was analyzed by nearest neighbor analysis. The sub 

districts Laung Tuhup NNI= 1.84, and Saripoi NNI= 1.33, p value < 0.05, which means that the pattern will 

be clustered, while in the sub districts Murung NNI= 0.36 and Seribu Riam NNI= 0.68, and Sei 

Babuat/Tanah Siang Selatan NNI=0.751, appeared as random dispersed patterns. Variable ANC, TBA care, 

drinking popa, smoking and accessibility were clustered (NNI >=0, p value <0.05) as shown in Table 3. The 

z-score was given to all variables. This result means that there was less than 1% likelihood that this clustered 

pattern could be the result of random chance. 
 

 

Table 3. The Results of The Nearest Neighbor Analysis with ArcGIS  

Variable 
Observed Mean 

Distance 

Expected Mean 

distance 

Nearest Neighbor 

ratio 
z-score p-value Exp. 

ANC 0.008 0.032 0.259 -11.168 0.000 clustered 

TBA care 0.003 0.027 0.117 -15.846 0.000 clustered 

Drinking popa 0.023 0.041 0.555 -3.713 0.002 clustered 

Smoking 0.017 0.042 0.398 -6.199 0.000 clustered 

Accessibility 0.004 0.024 0.198 -16.304 0.000 clustered 
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3.1.5. Clustering Analysis  

The result of clustering analysis as shown in Table 4 identified in 2013-2014 from purely spatial 

analysis scanning for high incidence rates using the Poison model found a statistically non significant cluster 

(p value>0.05) comprising two sub districts in Murung Raya with three cases of LBW in sub district Murung 

that were observed with 0.50 expected case and the cluster had relative risk of 6.00. While inTanah Siang 

Selatan and Sei Babuat had a most likely cluster that had 2 cases of LBW with 0.44 expected case and high 

relative risk of 4.50. A second statistically not significant cluster also was identified in another area. 

Although the other clusters were presented statistically not significant, still their relative risks were high. 

 

 

Table 4. Clustering LBW 

 

 

3.1.6. Buffering analysis 

Buffering analysis as shown in Figure 1 was used to determine the grouping of LBW cases based on 

the spatial element, in this case the distance from PHC with three distance categories. Most of the 

respondents, 45.3% live within less than 5 km, 5 – 10 km 30.7%, and 24% live within distance 10 km. Based 

on the distance with health personnel with three distance categories, less than 20 meters 30%, 44% of the 

respondents live in the category, 201-1,000 meters, and 26% more than 1 km. 

 

 

 
 

Figure 1. Buffer and IRR the Distance of PHC 

 

 

3.1.6. Diagnostic for spatial dependence 

Diagnostic for spatial dependence is shown in Table 5 used Geoda’s software with several tests of 

spatial dependence, such as: Moran's I (error), Lagrange multiplier (lag), Robust LM (lag), Lagrange 

multiplier (error), Robust LM (error), Lagrange multiplier (Sarma). The test results (spatial lag models - 

maximum likelihood estimation) were MI<1, with p value <0.05, which means that LBW does significantly 

Area Type Numberof cases Distances (km) Expected case RR p-value 

Murung Cluster 1 

Cluster 2 

2 

5 

3.21 

1.63 

0.50 

0.52 

6.00 

5.71 

0.91 

0.98 

TSS / Sei Babuat Cluster 1 

Cluster 2 

2 

2 

7.17 

0.032 

0.44 

0.67 

4.50 

3.00 

0.308 

0.811 

Joloi Cluster 1 2 0.02 1.20 1.67 0.66 

Tanah Siang Cluster 1 

Cluster 2 

3 

2 

4.37 

5.72 

0.55 

1.64 

3.67 

1.83 

0.248 

0.931 

Laung Tuhup Cluster 1 

Cluster 2 

Cluster 3 

2 

2 

2 

0.33 

0.25 

0.28 

0.44 

0.67 

0.89 

4.50 

3.00 

2.25 

4.50 

0.915 

0.995 
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follow the pattern of spatial distribution. LBW is associated with factors that exist in the area or spatial 

distribution of LBW. From the test result the Lagrange multiplier with p value <0.05 indicated that the spatial 

correlation does follow spatial patterning. The spatial lag models concluded that there was a dependency of 

spatial lag. This result means that there is a dependency between LBW cases in one area to other LBW cases 

in another area, so it can be continued to establish the SAR models. Lagrange multiplier test on spatial model 

error provided p values> 0.05, which indicated that there was no spatial error so it was not necessary to 

format the Spatial Error Model (SEM). The model conclusion of alleged SAR produced a better parameter of 

the SER model in the case of spatial dependency in modeling of LBW in Murung Raya.  

 

 

Table 5. Diagnostic for Spatial Dependence 
Subdistrict location 

Test MI/DF Z P value 

Spatial Error Correction 

Moran’s I 0.034 2.25 0.024 

Lagrange Multiplier 1 0.823 0.36 

Robust Lagrange Multiplier 1 0.20 0.65 

Spatial Lag Dependence 

Lagrange Multiplier 1 0.97 0.32 

Robust Lagrange Multiplier 1 0.35 0.55 

 

 

3.1.7. Poisson regression 

To detect the incidence of LBW the Poisson regression test was used to generate the number of 

cases expected in each environment exposure.An absolute measure of LBW risk was given by the Poisson 

regression, because the risks were dependent on the IRR of environment area variable. The Poisson 

regressions were used for the spatial analysis in this study because the probabilities of LBW in several sub 

districts at the event were rare.  

Altitude variable used 7 categories of parameter value as shown in Figure 2. Altitude variable with P 

value <0.05 was significantly correlated to LBW with all geographic altitude levels (>100 meters) in sub 

districts Tanah Siang Selatan (IRR=2.38), Sei Babuat (IRR=2.07), Joloi (IRR=6.09), and Saripoi (IRR=3.68). 

Mostly the residents of both cases and controls were at the altitude less than 60 meters above sea level, which 

are 95 respondent (63.3%), but based on IRR pattern, the highest were 6.09 at sub district Seribu Riam with 

altitude 400-500 meters because the higher the respondent’s residence, the higher the IRR value.  

 

 

 
 

Figure 2. IRR of LBW According to Altitude 

 

 

Slope surface is a relative measure of declivity on slope area toward the flat surface as shown in 

Figure 3. Variable slope surface correlated to LBW with the slope surface (2-4%, 4-6%, and >10%) in sub 
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district Seribu Riam (IRR=3.18) and Tanah Siang (IRR=2.07). The characteristics of the analyzed respondent 

indicate that their residences are located at slope surface of < 2% meter, while LBW cases according to IRR 

showed the highest were 6-10% located at sub district Seribu Riam because the higher the percentage of 

slope surface, the higher the IRR. 

 

 

 
 

Figure 3. IRR of LBW According to Level of Slope 

 

 

Mercury exposure was related to drainage area river basin condition and the number of case patients 

and control patients who lived in the area contaminated by coal and gold mining as shown in Figure 4. 

Mercury exposure correlated significantly to LBW with all levels (<0.0143 and >0.0425) in sub district 

Tanah Siang Selatan (IRR=2.99), Sei Babuat (IRR=4.99), Murung (IRR= 2.75), Laung Tuhup (IRR= 3.19), 

and Saripoi (IRR= 2.99). The distribution of LBW cases based on mercury exposure for both cases and 

controls is mostly at level 0.0144 - 0.0172 mg/L. The incidence rate indicated that LBW cases were mostly 

found at the center of the exposure and the IRR values were following the river flow. 

 

 

 
 

Figure 4. Map of Coal and Gold Mining Area Connected with Mercury Exposure 
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3.2. Analysis 

This study found that non adequate or without any antenatal care at all will cause many 

complications such as the increased incidence of LBW babies, compared with intensive adequate antenatal 

care, i.e. once at the first and second trimester, and twice at the third trimester. This result was in compliance 

with the theory of Chamberlain, G. & Morgan, M. [11] in their book, The ABC’s of Antenatal Care and the 

results of research in Washington that also found that LBW cases decreased after the enhancing of ANC [12], 

demonstrating that there are impacts of ANC to LBW [13]. It was also found that the dispersal pattern of 

antenatal variable was clustered, showing that there was a relationship between neighbor clusters with spatial 

features clustering and the occurrence of clustering. This result shared similar findings with other research 

utilizing spatial analysis to identify high risk pregnant mothers for intervention of antenatal visits by dividing 

the clustering at densely populated area [14]. The difference with this research was it involved areas where 

the populations were small with separated areas.  

The habit of drinking popa before or during pregnancy was found in this research related with LBW 

risk. They tended to higher cluster (hot spot) with the establishment of dense clustering with individual 

neighbor relations with high IRR values in certain areas. This finding corresponded with the theory 

framework that was submitted by Kramer [15] in determining the prevalence of LBW that there were 43 

factors that still need to be considered as LBW risk factors including alcohol consumption. This finding also 

corresponded with research on pregnant mothers showing alcohol consumption influenced the weight of the 

baby [16] (van Wijngaarden et al., 2014), where 26.3% of LBW cases was caused by alcohol consumption 

during pregnancy [17], and alcohol was correlated with LBW risk [18]. Alcohol consumption of 12 times/day 

or greater increased the risk for low birth weight [19]. The results of these research continue to be a 

controversy since alcohol consumption was not directly related with LBW [20]. This finding also 

corresponded with research in Japan where the average alcohol consumption amount was 1time per day [21]. 

In this research, drinking popa was not an individual habit but it was one of the requirements from the local 

custom and traditional culture. 

TBA care in this research influenced LBW because TBA provided treatment since the second month 

of pregnancy until the delivery process in traditional ways with the frequencies of visit more than 10 times 

compared with antenatal visits. This finding was in accordance with the theory that discussed social 

environment as a distal determinant that influenced LBW [22]. The TBA care procedures were not suitable 

with integrated pregnancy care standards, which are established by the government [23] mandating that 

pregnancy care should be handled by certified health personnel while TBA serves only as a partner. The 

finding in this research corresponded with several researches in sub-Saharan Africa and South Asia, which 

together account for over half of the deliveries (57%) in the developing world, with up to 65% of births 

occurring outside hospitals and predominantly delivered by TBA care [24]. According to Geographic Weight 

Odd Ratio (GWOR) analysis results, 41.5% of birth by TBA indicated significant relationship in space with 

low level of education [25], while in West Africa more than 80% delivery process is handled by TBAs [26]. 

Recent research in Nigeria indicates that delivery process outside hospital tended to be LBW [20], showing 

spatially different levels of economic conditions between each family [27]. It should be admitted that every 

district with low levels of social economic condition always have TBAs to help pregnancy care through 

partnering with health personnel [28]. In this research TBA care was conducted in traditional ways. 

Accessibilities are important components for a successful primary health care system. In this 

research we found that accessibility was related to distance, time travel and human resources with significant 

correlation with LBW risk, as mentioned in the theory of Anderson and Newman [29] that explained that 

accessibility was a support component for the communities using health services, and corresponded with the 

theory of service utilization [30]. Accessibilty factors clearly influence health services [31]. One of the 

methods to analyze the spatial accessibility is by calculating the measure based on geographic gravity. In this 

study the distance between community cluster and health facilities were used to calculate spatial 

accessibility. Recent research in Canada indicated the main problem of health service involved remote and 

rural areas where spatial access depends on cost, time travel, and distances [32]. Spatial accessibilities were 

dependent on a variety of factors including service place, time travel and distance, and location of health 

service to the needs of the communities [33]. The study determined that 12–14 % of the communities 

suffered from lack of health services due to the distance to reach health personnel >4 km, distance to the 

hospital >25 km and <0.2 mean distance (MD) individual every hour within a year [27]. The main problem in 

this research was nearly the same since the residences of the communities were located in remote areas that 

are far apart from other areas. Spatial access in this research related to the distance between sub district areas 

which indicated huge variation with almost 63% having difficult access, and only 12% with good access in 

the case groups. This result was similar with the research in Bhutan where 66% had difficult access and only 

10% had good access [33]. This study found that the lack of the community needs toward the health services 
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was due to their mobility as the consequences of their jobs and the presence of the health personnel was 

related with health personnel availability (supply) and community’s availability (demand).  

It has been found that there were linkages between sub districts’ rate relationships. It was indicated 

by the presence of spatial autocorrelation within neighboring areas that are more similar (positive). It can be 

concluded that the similar characteristics between the cases have a + value or indicate that LBW among the 

cases in Murung Raya sub districts had a positive correlation among the near locations, and the same with the 

variables of ANC, TBA care, drinking popa, smoking, and accessibility providing important evidence 

regarding variability in the strength of external neighborhood effect across risk factors of LBW. Previous 

research indicated that the correlation might be positive or negative [30], but the occurrence of spatial 

autocorrelation was highly depending on the aggregation level [35]. This result was contrary with sub 

districts Seribu Riam who had a very low MI value, where it is also a near neighboring area. These results 

indicated that this variable has the fewest and weakest external neighborhood effect. It was also because this 

sub district has a very extensive region located at the upper end and the residents of the communities were 

not in one spread out areas, indicating that this variable has an intermediate external neighborhood effect 

[36]. The difference of the result in this research is that the external effects of the other examined variables 

were varied between medium to extreme. The possibility exists that the spatial pattern of this external might 

be shared by more than one variable. 

This study with Getis-ord General G analysis found that the case of LBW in every sub districts had 

features with either high or low values clustered spatially with z-score negative, meaning that the smaller the 

z-score the more intense the clustering of random value (cold spots), while some sub districts with the 

positive z-score showing high value are clustered in the area of the research (random). Some sub districts and 

variables: ANC, TBA care, drinking popa, smoking and accessibility were correlated statistically significant, 

with positive z-score, meaning that the larger the z-score, the more intense the clustering of high value (hot 

spots). This result was similar with current health service strategies that targeted the location of the highest 

group of LBW cases [37]. The grouping based on health and environment behavior [9] and lowest value can 

be used to identify less served areas [38]. The difference of this study was we focused at the observed point 

of the hot spot which were the residences of the respondents with LBW cases and controls.  

In this study analysis we focused at the point rather than the density of the dots in the study area to 

determine whether the point was observed with a range of NNI. Based on the calculation we found that the 

dissemination of cases of LBW in some sub districts had a spread random pattern and the others had a 

clustered case pattern. The variables of ANC, TBA care, drinking popa, smoking, and accessibility had 

clustered pattern. This result indicated the distance between one LBW cases with another nearest case. In 

relation with that mapping and the similar level of accessibility with no obstacle, this research indicated that 

the object observed in Murung Raya had the same correlation power showing that the nearest locations had 

different values and tended to be spread out. Similar with previous research, the cases were considered as 

dots in the study area with a clustered pattern [39]. This approach was also similar with other hot spots 

research [40]. 

Our results showed some non statistically significant and secondary clusters found in this research in 

the observed area within sub districts were related to environmental and behavioural variables. The smoking 

variable as a statistically significant cluster was only found in Murung Raya Districts, while in other sub 

districts all clusters had more high relative risk and tended to have LBW. Significant clustering results were 

similar with [41] whose research was based on similarity using Global Moran’s I, showing non significant 

spatial clustering GWR. Theoretically the same feature of observed group pattern is caused by clustering 

[42]. In this research we found clustering resulted with high relative risk, which tended to cluster in each 

observed group. Clustering also was used to identify LBW groups using individual cases [43], thus 

geographically being able to set the consequenses to nearest neighbor areas [44], and generating spatial 

mapping data concerning the association regarding social and economic risk factors [37]. Spatial clustering 

results describe and explore spatial patterns from one spatial cluster to another nearest spatial cluster along 

the river [45]. This clustering did not occur in Murung Raya District due to the observed area being very 

wide and every residential area was constrained by the forest or the hills area. One of the requirements of 

clustering was grouping in one spread out area without any constraint. This approach to clustering was in 

accordance with the theory that the total coverage of the area can directly affect to their clustering area [46]. 

Buffer analysis in this study was used to identify the distance from PHC and health provider with 

the residence of LBW cases. In this study, the unit of buffering was the point of PHC and resident of health 

provider. Buffer operation refers to the creation of a zone of specified distance around the coverage features 

with 3 levels radius of distance. The research in Costa Rica indicated the following buffering was used to 

measure the distance between LBW: less than 1 km away from an outpatient care and 5 km away from the 

hospital. In terms of equity, 12–14% of population were underserved according to having an outpatient outlet 

within 4 km and the hospital within 25 km [27]. The potential spatial access to PHC also depends on the 
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patient’s travel cost (time/distance) [32], in addition to the distance by buffering [47]. According to recent 

research buffering social capital-related variables have more impact on LBW [48], with buffering living 

within 200 m from major roads associated with a 46% increase in term of LBW risk. Mothers who live in 

buffer 8 km with fish consumption from the river were more at risk for LBW [49], and within buffers of 100 

m, 300 m, and 500 m of each maternal home and distance to a city park, the study found a statistically 

significant association between low surrounding greenness and full term LBW. 

Spatial dependency analysis in this research at the non isolated sub district areas found that there 

were spatial dependency between LBW cases with variables of ANC, TBA care, drinking popa, smoking and 

accessibility. In the spatial lag model we concluded that there were spatial lag dependencies which mean that 

there were dependencies between LBW cases in one area with other areas. The model that was applied in this 

research to figure out the spatial influence in the data used the spatial auto regressive (SAR) model. This 

research approach was similar with the spatial dependency test or autocorrelation between the subjects 

observed and location [50],[51]. 

There was a significant relationship between environmental exposures of LBW. This study shows all 

districts have significant mercury contamination with high IRR, follow the stream, the altitude, and the slope 

[52],[53]. The process of environment exposure was because of the increased waste runoff carried by the 

rainfalls [54]. The contamination of mercury at the lower course of the river was higher than the upper course 

in sub districts. The result is in accordance with spatial risk valuation factors that decrease the gap of LBW 

influenced by environment exposure [55]. Environment factor was considered as a risk factor of LBW since 

it used the residence of mothers as a mediator of LBW [56]. Methyl mercury and heavy metals exposure were 

connected with LBW cases [16], This association also is revealed by the influence of geographical factors 

[57],[58]. There was further evidence for associations of Brome Hydragyrum (B-Hg) with decreases in birth 

weight [59]. Birth weight could be a predictor related to environmental contaminants and in a similar study in 

a river basin B-Hg was found statistically significant [60]. 

Our study found that LBW mostly happened among women who were residing within 8 kilometer 

with fish consumption. The result of this research indicates that hair or blood concentrations are relatively 

higher among those who consume more fish rather than infrequent fish consumption [49]. Different results 

were found from the research in China that mentioned that was no significant associations observed between 

any heavy metals and birth weight [61]. The difference was because there were no tests conducted to check 

mercury level in the hairs or nails of contaminated mothers, and no research regarding the period of 

contaminations, their results are spurious and unsupported.  

Mothers who lived in the highlands with lower oxygen level risked her baby for hypoxic fetal 

syndrome that causes neonatal asphyxia and LBW [62]. Differences were found in birth weight based on 

sexes and in the incidence of low birth weight depending on altitude [63], while the findings Tibetan birth 

weights are greater than those of other ethnic groups, both at high and low altitudes. Tibetans at low altitudes 

have heavier birth weights compared with Tibetans at high altitude. Birth weight that was lower at higher 

altitudes may be due to inadequate maternal oxygenation during pregnancy [64]. One study in South America 

found among the seven risk factors analyzed, altitude was the main predictor of birth weight [65]. 

This study found that the slope surface 4-6% was significant as a risk factor for LBW in sub districts 

Seribu Riam and Saripoi, since both of the areas are located at high slope. The environmental characteristics 

are influenced by the slope surface and positively correlated with LBW [53]. These factors also may 

contribute to the role of maternal place of residence as a mediator of maternal stress and adverse reproductive 

outcomes among women [56].  

From the analysis on the distribution of LBW relative to available hospital, we could visualize that 

only few areas were located beyond 12 km from the hospital in 2013-2014, but a significant relationship was 

found between distances to the hospital with IRR of LBW. Short distance neonatal transport was found 

useful and valuable for LBW infants with gestation age of 27–34 weeks in Southern Taiwan [66]. The 

population risk percentage for LBW was attributable to the distance from the hospital [67]. In Japan more 

LBW were found distributed within 30 km from a hospital with neonatology services [68]. These results 

show that the appropriate place of birth for LBW infants from low-income mothers may be influenced by the 

distance of their residence to an intensive care unit [69], but the distance did not contribute to the disparity in 

the use of top-tier hospitals [70]. 

 

 

4. CONCLUSION 

The spatial analysis detected an effect for each of the seventy five cases of LBW that were included in 

the study, which were the number of case and control subjects that lived in different areas (isolated or un-

isolated area). It is apparent that the spatial analysis study provided greater power to detect the geographic effect 

of LBW. The spatial distribution of LBW in Murung Raya is far from even. In several cases the frequency of 
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LBW in its district neighborhoods exceeds the statistical probabilities that could have arisen through random 

variation. This high incidence of LBW has also shown a significant relation to the spatial distribution of LBW. 

The crucial connection between incidence of LBW and geographic factor is particularly key to identifing 

behaviorial and environmental factors. Using the current evidence and theories examined, we concluded that the 

mapping of LBW by focusing on the neighborhoods using spatial analysis was useful for visualizing areas of 

LBW and this type of analysis could become a helpful tool for indicating the primary cause of the differences in 

LBW rates. The differences were best explained by examining spatial mapping of the variations in health 

behavior variables and environmental exposure characteristics. 
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