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 Tuberculosis (TB), caused by mycobacterium tuberculosis (MTB), remains a 

significant global health issue, leading to high morbidity and mortality rates 

despite being a preventable and curable disease. The dynamics of TB 

transmission and the effects of treatment are critical to improving disease 

management. This study aims to analyze the global stability of a susceptible, 

exposed, infected, medicated (SEIM) model for TB transmission, 

incorporating the effects of medication and infection phases on disease 

progression. A deterministic SEIM model is proposed, dividing the population 

into four compartments: susceptible, exposed, infected, and medicated. The 

model accounts for treatment effects, including non-permanent immunity and 

the potential dormancy of MTB. Stability analysis was conducted using 

Lyapunov functions to evaluate equilibrium points, and the basic reproduction 

number (ℜ0) was derived to determine disease dynamics. The analysis 

reveals that when ℜ0 < 1, the system is globally asymptotically stable at the 

non-endemic equilibrium, indicating disease eradication. Conversely, when 

ℜ0 > 1, the system converges to the endemic equilibrium, signifying 

sustained transmission within the population. These findings highlight the 

critical role of treatment and infection dynamics in controlling TB spread. The 

SEIM model provides a comprehensive framework for understanding TB 

transmission dynamics and emphasizes the importance of reducing (ℜ0) 

through effective public health interventions. Further research is 

recommended to validate the model with empirical data and explore its 

applicability in different epidemiological settings. 
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1. INTRODUCTION 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most pressing 

global health concerns. This infectious disease predominantly affects the lungs (pulmonary tuberculosis) but 

can spread to other body parts (extrapulmonary tuberculosis), presenting a significant public health challenge. 

MTB thrives in tissues with high blood and oxygen concentrations, and its slow-growing nature complicates 

diagnosis and treatment [1]. TB exists in two distinct phases: latent and active. Latent TB infection, 

characterized by the absence of microbiological, radiological, and clinical symptoms, poses no immediate 

threat of transmission [2], [3]. However, without appropriate treatment, 5-15% of latent cases may progress to 

active TB, which is highly infectious and associated with symptoms such as prolonged cough, fever, weight 

loss, and night sweats [4]-[6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Despite advancements in TB management, the disease claimed approximately 1.5 million lives in 

2022, reflecting a persistent burden on global health systems [7], [8]. While TB is curable with early diagnosis 

and comprehensive treatment, challenges remain, particularly in eradicating latent TB and managing active 

infections. Treatment regimens for active TB, including a combination of drugs like isoniazid, rifampin, 

ethambutol, and pyrazinamide, are effective but carry risks such as drug toxicity [9]-[14]. These side effects, 

including nausea, vision impairment, and severe complications at high doses, highlight the need for improved 

therapeutic strategies [15], [16]. 

The dynamics of TB transmission, particularly the transition between latent and active phases, remain 

complex and underexplored. Existing mathematical models often overlook critical factors such as varying 

infection phases, the effects of treatment, and the risk of drug toxicity. This gap in understanding limits the 

development of effective public health interventions. 

This paper introduces a deterministic susceptible, exposed, infected, medicated (SEIM) model to 

analyze TB transmission dynamics. Unlike previous studies, this model incorporates two phases of infectivity 

(latent and active TB), accounts for both slow and rapid TB progression, and evaluates the impact of effective 

treatment on disease dynamics. The model also considers potential outcomes of medication, including MTB 

eradication, dormancy induction, and adverse drug reactions. Using Lyapunov functions, the study investigates 

the global stability of endemic and non-endemic equilibrium points, providing new insights into TB control 

strategies. By addressing these dynamics, the study offers a novel framework for understanding and mitigating 

TB transmission [17]-[19]. 

 

 

2. METHOD 

2.1.  Model formulation 

This study develops a deterministic mathematical model to analyze tuberculosis (TB) dynamics by 

considering four population compartments: susceptible (S), exposed (E), infected (I), and medicated (M). The 

primary objective is to assess the stability of equilibrium points and evaluate the influence of key parameters on 

TB transmission. The mathematical model is represented by a system of differential equations that describe the 

changes in each population compartment as: 

- Differential equations: 

 
𝑑𝑆

𝑑𝑡
= 𝜆 − 𝛽𝑆

𝐼

𝑁
− 𝜇𝑆 + (1 − 𝑞)𝜃  

𝑑𝐸

𝑑𝑡
= 𝑐𝛽𝑆

𝐼

𝑁
+ 𝑞𝜃𝑀 − (𝜇 + 𝛼)𝐸  

𝑑𝐼

𝑑𝑡
= (1 − 𝑐)𝛽𝑆

𝐼

𝑁
+ 𝛼𝐸 − (𝜇 + 𝜂 + 𝛿)𝐼  

𝑑𝑀

𝑑𝑡
= 𝜂𝐼 − (𝜇 + 𝜃 + 𝛾)𝑀  

 

Here, 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑀 represents the total population size. 

- Variables and parameters: 

𝑆 = Number of susceptible individuals. 

𝐸 = Number of exposed individuals. 

𝐼 = Number of infected individuals. 

𝑀 = Number of individuals receiving medication. 

𝛽 = Contact rate of infection. 

𝜆 = Recruitment rate of new individuals into the susceptible compartment. 

𝜇 = Natural death rate. 

𝛼 = Rate of progression to active TB from the exposed state. 

𝜂 = Medication rate. 

𝛿 = Death rate due to TB. 

𝜃 = Transition rate from medication to susceptible or exposed states. 

𝛾 = Death rate due to complications from medication. 

𝑞 = Proportion of patients who enter a dormant state. 

 

2.2.  Analysis technique 

To analyze the stability of equilibrium points, we use Lyapunov function techniques. The analysis is 

conducted for two primary equilibrium points: 

a. Non-endemic equilibrium point: Achieved when ℜ0 < 1, indicating the disease-free state. 

b. Endemic equilibrium point: Achieved when ℜ0 > 1, signifying the persistence of TB within the population. 
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Lyapunov function techniques are employed to prove the global stability of these equilibrium points, 

determining whether the solutions converge to these points over time. The basic reproduction number ℜ0 is 

computed to evaluate the potential for TB spread within the population. ℜ0 is calculated using the next-

generation matrix approach: 

 

ℜ0 =
𝛽𝜆(𝜇+𝜃+𝛾)((1−𝑐)(𝜇+𝛼)+𝑐𝛼)

𝜇[(𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂]
  

 

An ℜ0 value less than one indicates that the disease will decline, while an ℜ0 value greater than one suggests 

the potential for endemicity. 

 

2.3.  Numerical simulations 

Numerical simulations are performed to evaluate the impact of key parameters on TB transmission. 

The model is implemented using mathematical software to simulate real-world scenarios. Numerical 

simulations are performed to evaluate the influence of model parameters on TB dynamics. The simulations are 

implemented using mathematical software based on parameter values derived from relevant epidemiological 

studies. Key parameters, such as infection rates, contact rates, and medication rates, are taken from the literature 

to ensure realism and reliability in the simulations. A sensitivity analysis is conducted to determine how 

variations in model parameters, such as 𝛽 (contact rate) and 𝜂 (medication rate), affect ℜ0 and TB transmission. 

This analysis helps identify the most critical factors influencing disease control. 

 

2.4.  Model validation, implications, and recommendations 

Model validation is carried out by comparing simulation results with actual epidemiological data and 

previous studies. This ensures that the developed model accurately reflects TB dynamics. The results from this 

model provide insights into effective TB control strategies. Based on the analysis, it is recommended that public 

health policies focus on reducing the frequency of contact between vulnerable and infected individuals and 

improving medication adherence. 

The model results offer valuable insights for TB control strategies. Effective interventions include: 

a. Reducing contact rates between vulnerable and infected individuals. 

b. Enhancing medication adherence to limit TB progression and transmission. 

Public health policies should incorporate these findings to strengthen TB eradication efforts. 

 

 

3. RESULTS AND DISCUSSION 

The proposed SEIM model offers unique insights into tuberculosis (TB) dynamics by focusing on the 

role of medication and its side effects. To contextualize these findings, the results are compared with similar 

studies: 

a. SEIR models with vital dynamics 

Studies using SEIR frameworks highlight the role of latency in delaying the spread of TB. For 

instance, research by Side et al. [20] emphasizes the equilibrium states for ℜ0 < 1 and ℜ0 > 1, but lacks focus 

on treatment effects, a key feature in our model [21]. Our SEIM model complements these findings by 

integrating drug-induced dormancy and transitions between compartments, offering a more comprehensive 

analysis of treatment impact. 

b. Age-structured models 

Research on age-structured TB models explores different transmission rates for children and adults, 

offering detailed stratifications of the population. However, these models generally overlook the complexities 

of treatment pathways, such as toxicity or incomplete recovery. By contrast, our results demonstrate how 

medication influences TB dynamics, providing actionable insights into therapy optimization [22], [23]. 

c. Vaccination dynamics 

Vaccination models, such as those presented by Aldila et al. [24], primarily focus on reducing the 

basic reproduction number (ℜ0) through immunization campaigns. While effective for prevention, these 

models do not evaluate treatment outcomes. Our SEIM model addresses this gap by quantifying medication 

effects and their potential to reduce ℜ0 through improved adherence and minimizing toxicity [25]. 

From a public health perspective, the results emphasize three key implications for TB control. First, 

reducing medication toxicity rates (𝛾) and improving treatment adherence (𝜂) can significantly lower ℜ0, 

highlighting the necessity for safer and more effective drug regimens. Second, the inclusion of direct transitions 

from susceptible to infected compartments (1 − 𝑐) suggests the need for targeted interventions to prevent rapid 

disease progression among high-risk populations. Finally, the study underscores the importance of combining 

preventive measures, such as vaccination, with robust treatment strategies to ensure comprehensive TB control. 
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To translate these findings into actionable policies, investments in safer medications are crucial to minimize 

toxicity-related mortality. Additionally, strengthening healthcare systems to enhance treatment adherence and 

implementing multifaceted prevention and treatment strategies are vital for achieving sustained reductions in 

TB prevalence. The SEIM model thus bridges significant gaps in TB modeling research, providing actionable 

insights that align with public health priorities. 

 

3.1.  Model formulation 

Three compartments comprise the transmission model: susceptible individuals (𝑆), exposed 

individuals (those infected with 𝑀. tuberculosis but not clinically ill and hence noninfectious) (𝐸), infected 

individuals (those with active TB) (𝐼), and medicated individuals (those receiving medication) (𝑀).  
𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑀(𝑡) is the total number of people at time 𝑡. 

Individuals in the susceptible class (𝑆) have a contact rate with infected individuals of 𝛽𝐼/𝑁 , where 

0 < 𝛽 ≤ 1 is the probability of a susceptible individual being infected by an infected individual. The 

recruitment rate in the susceptible subpopulation is denoted by 𝜆. Susceptible individuals can be exposed to 

MTB and move to subpopulation 𝐸 with a probability of 𝑐, where 0 < 𝑐 ≤ 1. Susceptible individuals infected 

with the MTB virus can become infected without first becoming an exposed individual with a probability of 
(1 − 𝑐). Exposed individuals can develop active TB at the rate 𝛼 > 0. Infected individuals undergo medication 

at the level 𝜂 > 0 and move to the subpopulation M(𝑡). Infected individuals have a risk of death from TB 

disease at the rate 𝛿 > 0, while the natural death rate in each subpopulation is 𝜇 > 0. It is assumed that 

administering drugs to individuals infected with TB gives three reactions. The first reaction is that the MTB in 

the body disappears so that the individual will return to being a susceptible individual with a rate (1 − 𝑞)𝜃. 

The second reaction is to make the active TB virus inactive (dormancy) so that the individual will return to 

being an exposed individual with a rate 𝑞𝜃. The last, administering drugs can cause someone to die due to 

poisoning, liver damage, or overdose with a rate 𝛾 > 0. 

The transmission model can be written as the system of nonlinear differential equations, as in (1). 

 
𝑑𝑆

𝑑𝑡
= 𝜆 − 𝛽𝑆

𝐼

𝑁
− 𝜇𝑆 + (1 − 𝑞)𝜃  

𝑑𝐸

𝑑𝑡
= 𝑐𝛽𝑆

𝐼

𝑁
+ 𝑞𝜃𝑀 − (𝜇 + 𝛼)𝐸  

𝑑𝐼

𝑑𝑡
= (1 − 𝑐)𝛽𝑆

𝐼

𝑁
+ 𝛼𝐸 − (𝜇 + 𝜂 + 𝛿)𝐼  

𝑑𝑀

𝑑𝑡
= 𝜂𝐼 − (𝜇 + 𝜃 + 𝛾)𝑀  (1) 

 

Figure 1 displays the (1) transfer diagram. The fractions of the class susceptible, exposed, infected, and 

medicated (drugged) in the population are represented, respectively, by the variables 𝑣 =
𝑆

𝑁
, 𝑤 =

𝐸

𝑁
, 𝑥 =

𝐼

𝑁
, and 

𝑦 =
𝑀

𝑁
. Verifying that 𝑣, 𝑤, 𝑥, and 𝑦 fulfill the differential equation system is simple, 

 
𝑑𝑣

𝑑𝑡
= 𝜆 − 𝛽𝑣𝑥 − 𝜇𝑣 + (1 − 𝑞)𝜃𝑦  

𝑑𝑤

𝑑𝑡
= 𝑐𝛽𝑣𝑥 + 𝑞𝜃𝑦 − (𝜇 + 𝛼)𝑤  

𝑑𝑥

𝑑𝑡
= (1 − 𝑐)𝛽𝑣𝑥 + 𝛼𝑤 − (𝜇 + 𝜂 + 𝛿)𝑥  

𝑑𝑦

𝑑𝑡
= 𝜂𝑥 − (𝜇 + 𝜃 + 𝛾)𝑦 (2) 

 

subject to the restriction 𝑣 + 𝑤 + 𝑥 + 𝑦 =  1. 

Given that (2) depicts the human population, it is imperative to reveal that every state variable is nonnegative. 

The following subsection provides an explanation of these fundamental characteristics. 

 

 

 
 

Figure 1. Transfer diagram for dynamic (1) 
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3.2.  Positivity of solutions and invariant region 

3.2.1. Positivity of solutions 

To demonstrate the epidemiological significance of the TB model, we shall demonstrate that every 

variable in (2) is non-negative for all times 𝑡 > 0. This leads us to the following lemma. 

Lemma 1. The solutions 𝑣(𝑡), 𝑤(𝑡), 𝑥(𝑡), and 𝑦(𝑡) of the (2) are positive for all 𝑡 > 0 if 𝑣(0) ≥ 0, 𝑤(0) ≥
0, 𝑥(0) ≥ 0, and 𝑦(0) ≥ 0. Proof: the first equation of (2) states that if 𝑣(0), 𝑤(0), 𝑥(0), and 𝑦(0) are all zero, 

then 
𝑑𝑣(𝑡)

𝑑𝑡
= 𝜆 − 𝛽𝑣(𝑡)𝑥(𝑡) − 𝜇𝑣(𝑡) + (1 − 𝑞)𝜃𝑦(𝑡). 

Rewriting it would look like this (3). 

 
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝛽𝑣(𝑡)𝑥(𝑡) + 𝜇𝑣(𝑡) = 𝜆 + (1 − 𝑞)𝜃𝑦(𝑡)  

𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡)(𝛽𝑥(𝑡) + 𝜇) 𝑒𝑥𝑝 (𝜇𝑡 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑡

0
)  = (𝜆 + (1 − 𝑞)𝜃𝑦(𝑡)) 𝑒𝑥𝑝 (𝜇𝑡 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑡

0
)  

𝑑

𝑑𝑡
(𝑣(𝑡) 𝑒𝑥𝑝 (𝜇𝑡 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑡

0
) ) = (𝜆 + (1 − 𝑞)𝜃𝑦(𝑡)) exp (𝜇𝑡 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑡

0
) (3) 

 

Integrating both sides, we get (4). 

 

𝑣(𝑡) exp (𝜇𝑡 + ∫ 𝛽𝑥(𝑢)𝑑𝑢
𝑡

0
) − 𝑣(0) = ∫ (𝜆 + (1 − 𝑞)𝜃𝑦(𝑎))

𝑡

0
exp(𝜇𝑎 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑎

0
) 𝑑𝑎  (4) 

Therefore, 𝑣(𝑡) answer is (5). 

 

𝑣(𝑡) = 𝑣(0) 𝑒𝑥𝑝 (−𝜇𝑡 − ∫ 𝛽𝑥(𝑢)𝑑𝑢
𝑡

0
)  

+ exp (−𝜇𝑡 − ∫ 𝛽𝑥(𝑢)𝑑𝑢
𝑡

0
) ∫ (𝜆 + (1 − 𝑞)𝜃𝑦(𝑎)) exp(𝜇𝑎 + ∫ 𝛽𝑥(𝑢)𝑑𝑢

𝑎

0
) 𝑑𝑎

𝑡

0
> 0, ∀𝑡 > 0. (5) 

 

Likewise, we may demonstrate that 𝑤(𝑡), 𝑥(𝑡), and 𝑦(𝑡) > 0. Thus, for any 𝑡 > 0, the (2) solutions 

𝑣(𝑡), 𝑤(𝑡), 𝑥(𝑡), and 𝑦(𝑡) are positive. So, we have (6). 
 

𝑑𝑣(𝑡)

𝑑𝑡
 =  𝜆 − 𝛽𝑣(𝑡)𝑥(𝑡) − 𝜇𝑣(𝑡)  + (1 − 𝑞)𝜃𝑦(𝑡) . (6) 

 

Rewriting it (6) would look like this: 
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝛽𝑣(𝑡)𝑥(𝑡) + 𝜇𝑣(𝑡) = 𝜆 + (1 − 𝑞)𝜃𝑦(𝑡). 

 

3.2.2. Invariant region 

The biological importance of our (2) can be determined by analyzing it within a suitable and practical 

region 𝛺 and demonstrating that the parameters and variables are non-negative for all times 𝑡 ≥  0. 

Lemma 2. In (2) positively invariantly defines the feasible region 𝛺 as (7). 
 

Ω = {(𝑣(𝑡), 𝑤(𝑡), 𝑥(𝑡), 𝑦(𝑡)) ∈ ℝ+
4  0: ≤ 𝑣(𝑡) + 𝑤(𝑡) + 𝑥(𝑡) + 𝑦(𝑡) ≤

𝜆

𝜇
} (7) 

 

With starting condition 𝑣(0) ≥ 0, 𝑤(0) ≥ 0, 𝑥(0) ≥ 0, 𝑦(0) ≥ 0. 

Proof. In (2) are added to yield (8). 
 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑣(𝑡)

𝑑𝑡
+

𝑑𝑤(𝑡)

𝑑𝑡
+

𝑑𝑥(𝑡)

𝑑𝑡
+

𝑑𝑦(𝑡)

𝑑𝑡
= 𝜆 − 𝜇𝑁(𝑡) − 𝛿𝑥(𝑡) − 𝛾𝑦(𝑡) <  𝜆 − 𝜇𝑁(𝑡) (8) 

 

In (2) is examined to determine the fundamental reproduction ratio and investigate the stability of both endemic 

and non-endemic equilibrium. 0 ≤  𝑁(𝑡) ≤
𝜆

𝜇
+ 𝑁(0)𝑒−𝜇𝑡 , where 𝑁(0) represents the starting values of the 

entire population, follows. Thus, as 𝑡 → ∞, 0 ≤ 𝑁(𝑡) ≤
𝜆

𝜇
. Thus, for (2), the region (7) is a positively invariant 

set. The dynamics of equations (2) on the region Ω will be examined. 

 

3.3.  Basic reproduction ratio 

We use the next-generation matrix to derive the basic reproduction ratio, ℜ0, to analyze the stability 

of non-endemic equilibrium [26], [27]. 𝑈𝐸𝑃0 = (
𝜆

𝜇
, 0,0,0) is the non-endemic equilibrium point of the (2). 

According to [28], [29], the basic reproduction ratio ℜ0 for (1) through (8) is as (9). 

 

ℜ0 =
𝛽𝜆(𝜇+𝜃+𝛾)((1−𝑐)(𝜇+𝛼)+𝑐𝛼)

𝜇[(𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂]
 (9) 

 

The following subsection presents the local stability of equilibrium. 
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3.4.  Global stability of non-endemic equilibrium 

We employ Lyapunov stability to demonstrate the global strength of the non-endemic equilibrium 

point 𝑈𝐸𝑃0. Theorem 1 can be utilized to illustrate the global stability of 𝑈𝐸𝑃0. Theorem 1 [30], [31] states 

that when ℜ0 < 1 then equilibrium point 𝑈𝐸𝑃0 is globally asymptotically stable. Proof. Given the candidate 

Lyapunov function, as in (10). 

 

𝑉 = 𝐴1𝑤 + 𝐴2𝑥 + 𝐴3𝑦 (10) 

 

Which was motivated by Savadogo et al. [32] and Aziz-Alaoui et al. [33], where 𝐴1, 𝐴2, and 𝐴3 are positive 

constants that will be found later. 

𝑉̇ = 𝐴1𝑤̇ + 𝐴2𝑥̇ + 𝐴3𝑦̇ is its derivative along the solutions to (2), we have (11). 

 

𝑉̇ = 𝐴1(𝑐𝛽𝑣𝑥 + 𝑞𝜃𝑦 − (𝜇 + 𝛼)𝑤) + 𝐴2((1 − 𝑐)𝛽𝑣𝑥 + 𝛼𝑤 − (𝜇 + 𝜂 + 𝛿)𝑥)  

+𝐴3(𝜂𝑥 − (𝜇 + 𝜃 + 𝛾)𝑦). 

𝑉̇ = (−𝐴1(𝜇 + 𝛼) + 𝐴2𝛼)𝑤 + (−𝐴2(𝜇 + 𝜂 + 𝛿) + 𝐴3𝜂 + 𝐴1𝑐𝛽𝑣 + 𝐴2(1 − 𝑐)𝛽𝑣)𝑥  

+(𝐴1𝑞𝜃 − 𝐴3(𝜇 + 𝜃 + 𝛾))𝑦  (11) 

 

The coefficients of 𝑤 are set to equal zero by the constants 𝐴1 and 𝐴2. Consequently, we have (12). 

 

𝐴1 = 𝛼, 𝐴2 = (𝜇 + 𝛼) (12) 

 

In a similar vein, the constant 𝐴3 is selected so that y's coefficients equal zero. We obtain (13). 

 

𝐴3 =
𝐴1𝑞𝜃

(𝜇+𝜃+𝛾)
 (13) 

 

Since 𝐴1 = 𝛼, we have (14). 

 

𝐴3 =
𝛼𝑞𝜃

(𝜇+𝜃+𝛾)
 (14) 

 

Finally, we obtain (15) after inserting in the positive constants 𝐴1, 𝐴2, and 𝐴3 from (13) in (14). 

 

𝑉̇ = [−(𝜇 + 𝛼)(𝜇 + 𝜂 + 𝛿) +
𝛼𝑞𝜃

(𝜇+𝜃+𝛾)
𝜂 + 𝛼𝑐𝛽𝑣 + (𝜇 + 𝛼)(1 − 𝑐)𝛽𝑣] 𝑥  

𝑉̇ =
1

(𝜇+𝜃+𝛾)
[𝛽((1 − 𝑐)𝜇 + 𝛼)(𝜇 + 𝜃 + 𝛾)] [𝑣 −

1

ℜ0
] 𝑥  (15) 

 

As 𝑣 ≤ 𝑣0, we possess (16). 

 

𝑉̇ ≤
𝛽((1−𝑐)𝜇+𝛼)(𝜇+𝜃+𝛾)𝑥

(𝜇+𝜃+𝛾)
[1 −

1

ℜ0
] (16) 

 

Moreover, 𝑉̇ = 0 only holds for ℜ0 = 1 or 𝑥 = 0. The 𝑈𝐸𝑃0 is the greatest invariant set in 

{(𝑣, 𝑤, 𝑥, 𝑦): 𝑉̇ = 0}. The LaSalle's invariance principle [34]-[36] states that 𝑈𝐸𝑃0 is globally stable when 

ℜ0 < 1. 

 

3.5.  Global stability of non-endemic equilibrium 

The (2) has endemic equilibrium point 𝐸𝐸𝑃∗ = (𝑣∗, 𝑤∗, 𝑥∗, 𝑦∗), where (17). 

 

𝑣∗ =
𝜆

𝜇ℜ0
, 

𝑤∗ =
𝜇(𝑞𝜃𝜂(1−𝑐)+(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)𝑐)((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂)

𝛽(𝜇+𝜃+𝛾)(𝑐𝛼+(1−𝑐)(𝜇+𝛼))((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂−(1−𝑞)𝜃𝜂(𝑐𝛼+(1−𝑐)(𝜇+𝛼)))
(ℜ0 − 1),  

𝑥∗ =
𝜇((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂)

𝛽((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂−(1−𝑞)𝜃𝜂(𝑐𝛼+(1−𝑐)(𝜇+𝛼)))
(ℜ0 − 1), 

𝑦∗ =
𝜇𝜂((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂)

𝛽(𝜇+𝜃+𝛾)((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂−(1−𝑞)𝜃𝜂(𝑐𝛼+(1−𝑐)(𝜇+𝛼)))
(ℜ0 − 1).  (17) 
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Thus, the endemic equilibrium is present when ℜ0 > 1. Later, the global stability of 𝐸𝐸𝑃∗ is demonstrated 

using Theorem 2. 

Theorem 2. When ℜ0 > 1, the endemic equilibrium point EEP∗ is globally asymptotically stable. 

Proof. For the endemic equilibrium  𝐸𝐸𝑃∗, 𝑣∗, 𝑤∗, 𝑥∗, and 𝑦∗ satisfies (18). 

 

𝜆 − 𝛽𝑣∗𝑥∗ − 𝜇𝑣∗ + (1 − 𝑞)𝜃𝑦∗ = 0  

𝑐𝛽𝑣∗𝑥∗ + 𝑞𝜃𝑦∗ − (𝜇 + 𝛼)𝑤∗ = 0  

(1 − 𝑐)𝛽𝑣∗𝑥∗ + 𝛼𝑤∗ − (𝜇 + 𝜂 + 𝛿)𝑥∗ = 0  

𝜂𝑥∗ − (𝜇 + 𝜃 + 𝛾)𝑦∗ = 0 (18) 

 

Motivated by [30], [31], we consider the Lyapunov function as (19). 

 

𝐹 = (𝑣 − 𝑣∗ln𝑣) + 𝑐1(𝑤 − 𝑤∗ln𝑤) + 𝑐2(𝑥 − 𝑥∗ln𝑥) + 𝑐3(𝑦 − 𝑦∗ln𝑦) (19) 

 

Where the positive constants 𝑐1, 𝑐2, and 𝑐3 are to be found subsequently. As we differentiate 𝐹 concerning 𝑡 

along the (2) solutions, we obtain (20). 

 

𝐹̇ = (1 −
𝑣∗

𝑣
) 𝑣̇ + 𝑐1 (1 −

𝑤∗

𝑤
) 𝑤̇ + 𝑐2 (1 −

𝑥∗

𝑥
) 𝑥̇ + 𝑐3 (1 −

𝑦∗

𝑦
) 𝑦̇  

𝐹̇ = (1 −
𝑣∗

𝑣
) (𝜆 − 𝛽𝑣𝑥 − 𝜇𝑣 + (1 − 𝑞)𝜃𝑦) + 𝑐1 (1 −

𝑤∗

𝑤
) (𝑐𝛽𝑣𝑥 + 𝑞𝜃𝑦 − (𝜇 + 𝛼)𝑤)  

+𝑐2 (1 −
𝑥∗

𝑥
) ((1 − 𝑐)𝛽𝑣𝑥 + 𝛼𝑤 − (𝜇 + 𝜂 + 𝛿)𝑥)  

+𝑐3 (1 −
𝑦∗

𝑦
) (𝜂𝑥 − (𝜇 + 𝜃 + 𝛾)𝑦)  

𝐹̇ = (𝜆 + 𝑐1(𝜇 + 𝛼)𝑤∗ + 𝑐2(𝜇 + 𝜂 + 𝛿)𝑥∗ + 𝑐3(𝜇 + 𝜃 + 𝛾)𝑦∗) − 𝜆
𝑣∗

𝑣
  

+(−𝑐1(𝜇 + 𝛼) + 𝑐2𝛼)𝑤 + (𝛽𝑣∗ + 𝑐3𝜂 − 𝑐2(𝜇 + 𝜂 + 𝛿))𝑥  

+((1 − 𝑞)𝜃 + 𝑐1𝑞𝜃 − 𝑐3(𝜇 + 𝜃 + 𝛾))𝑦  

+(−𝛽 + 𝑐1𝑐𝛽 + 𝑐2(1 − 𝑐)𝛽)𝑣𝑥 + 𝜇𝑣∗ − 𝜇𝑣 − ((1 − 𝑞)𝜃𝑦∗ 𝑦

𝑦∗

𝑣∗

𝑣
)  

− (𝑐1𝑐𝛽𝑣∗𝑥∗ 𝑣

𝑣∗

𝑥

𝑥∗

𝑤∗

𝑤
+ 𝑐1𝑞𝜃𝑦∗ 𝑦

𝑦∗

𝑤∗

𝑤
)  

− (𝑐2(1 − 𝑐)𝛽𝑣∗ 𝑣

𝑣∗ 𝑥∗ + 𝑐2𝛼𝑤∗ 𝑤

𝑤∗

𝑥∗

𝑥
) − (𝑐3𝜂𝑥∗ 𝑥

𝑥∗

𝑦∗

𝑦
) (20) 

 

By considering in (18), one has (21). 

 

𝜆 = 𝛽𝑣∗𝑥∗ + 𝜇𝑣∗ − (1 − 𝑞)𝜃𝑦∗  
(𝜇 + 𝛼)𝑤∗ = 𝑐𝛽𝑣∗𝑥∗ + 𝑞𝜃𝑦∗  

(𝜇 + 𝜂 + 𝛿)𝑥∗ = (1 − 𝑐)𝛽𝑣∗𝑥∗ + 𝛼𝑤∗  

(𝜇 + 𝜃 + 𝛾)𝑦∗ = 𝜂𝑥∗ (21) 

 

By using first equation until forth equation of system (18), in (19) becomes (20). 

 

𝐹̇ = 𝛽𝑣∗𝑥∗ (1 −
𝑣∗

𝑣
) − (1 − 𝑞)𝜃𝑦∗ (1 −

𝑣∗

𝑣
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (1 −

𝑣

𝑣∗

𝑥

𝑥∗

𝑤∗

𝑤
)  

+𝑐1𝑞𝜃𝑦∗ (1 −
𝑦

𝑦∗

𝑤∗

𝑤
) + 𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ (1 −

𝑣

𝑣∗)  

+𝑐2𝛼𝑤∗ (1 −
𝑤

𝑤∗

𝑥∗

𝑥
) + 𝑐3𝜂𝑥∗ (1 −

𝑥

𝑥∗

𝑦∗

𝑦
) + (−𝑐1(𝜇 + 𝛼) + 𝑐2𝛼)𝑤  

+(𝛽𝑣∗ + 𝑐3𝜂 − 𝑐2(𝜇 + 𝜂 + 𝛿))𝑥  

+((1 − 𝑞)𝜃 + 𝑐1𝑞𝜃 − 𝑐3(𝜇 + 𝜃 + 𝛾))𝑦  

+(−𝛽 + 𝑐1𝑐𝛽 + 𝑐2(1 − 𝑐)𝛽)𝑣𝑥 + 𝜇𝑣∗ (2 −
𝑣

𝑣∗ −
𝑣∗

𝑣
)  

− ((1 − 𝑞)𝜃𝑦∗ 𝑦

𝑦∗

𝑣∗

𝑣
) (22) 

 

Let 𝐴 =
𝑣

𝑣∗ , 𝐵 =
𝑤

𝑤∗ , 𝐶 =
𝑥

𝑥∗ , 𝐷 =
𝑦

𝑦∗, then in (22) becomes (23). 
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𝐹̇ = 𝜇𝑣∗ (2 − 𝐴 −
1

𝐴
) + 𝛽𝑣∗𝑥∗ (1 −

1

𝐴
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (1 −

𝐴𝐶

𝐵
) + 𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗(1 − 𝐴)  

+𝑐1𝑞𝜃𝑦∗ (1 −
𝐷

𝐵
) + 𝑐2𝛼𝑤∗ (1 −

𝐵

𝐶
) + 𝑐3𝜂𝑥∗ (1 −

𝐶

𝐷
)  

−(1 − 𝑞)𝜃𝑦∗ (1 −
1

𝐴
) − ((1 − 𝑞)𝜃𝑦∗ 𝐷

𝐴
) + (−𝑐1(𝜇 + 𝛼) + 𝑐2𝛼)𝑤  

+(𝛽𝑣∗ + 𝑐3𝜂 − 𝑐2(𝜇 + 𝜂 + 𝛿))𝑥  

+((1 − 𝑞)𝜃 + 𝑐1𝑞𝜃 − 𝑐3(𝜇 + 𝜃 + 𝛾))𝑦  

+(−𝛽 + 𝑐1𝑐𝛽 + 𝑐2(1 − 𝑐)𝛽)𝑣𝑥 (23) 

 

Making the coefficients 𝑤, 𝑥, 𝑦, 𝑣𝑥 are equal to 0, so we have the relationship (24). 

 

𝑐1(𝜇 + 𝛼) = 𝑐2𝛼  

𝑐2(𝜇 + 𝜂 + 𝛿) = 𝛽𝑣∗ + 𝑐3𝜂  

𝑐3(𝜇 + 𝜃 + 𝛾) = (1 − 𝑞)𝜃 + 𝑐1𝑞𝜃  

𝑐1𝑐 + 𝑐2(1 − 𝑐) = 1 (24) 

 

We obtain (25). 

 

𝑐1 =
𝛼

(𝛼𝑐+(1−𝑐)(𝜇+𝛼))
, 𝑐2 =

(𝜇+𝛼)

(𝛼𝑐+(1−𝑐)(𝜇+𝛼))
, 𝑐3 =

(1−𝑞)𝜃+𝑐1𝑞𝜃

(𝜇+𝜃+𝛾)
  (25) 

 

 

Replacing the expressions of 𝑐1, 𝑐2 and 𝑐3 in (23) then we get (26). 

 

𝐹̇ = 𝜇𝑣∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (1 −

1

𝐴
) + 𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ (1 −

1

𝐴
)  

+𝑐1𝑐𝛽𝑣∗𝑥∗ (1 −
𝐴𝐶

𝐵
) + 𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗(1 − 𝐴) + 𝑐1𝑞𝜃𝑦∗ (1 −

𝐷

𝐵
)  

+𝑐2𝛼𝑤∗ (1 −
𝐵

𝐶
) + 𝑐3𝜂𝑥∗ (1 −

𝐶

𝐷
) − (1 − 𝑞)𝜃𝑦∗ (1 −

1

𝐴
)  

− ((1 − 𝑞)𝜃𝑦∗ 𝐷

𝐴
) + (−𝑐1(𝜇 + 𝛼) + 𝑐2𝛼)𝑤  

+(𝛽𝑣∗ + 𝑐3𝜂 − 𝑐2(𝜇 + 𝜂 + 𝛿))𝑥  

+((1 − 𝑞)𝜃 + 𝑐1𝑞𝜃 − 𝑐3(𝜇 + 𝜃 + 𝛾))𝑦  

+(−𝛽 + 𝑐1𝑐𝛽 + 𝑐2(1 − 𝑐)𝛽)𝑣𝑥 (26) 

 

Using the fact that 𝑐1𝑐 + 𝑐2(1 − 𝑐) = 1, in (26) becomes (27). 

 

𝐹̇ = 𝜇𝑣∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (2 −

1

𝐴
−

𝐴𝐶

𝐵
)  

+𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑞𝜃𝑦∗ (1 −

𝐷

𝐵
) + 𝑐2𝛼𝑤∗ (1 −

𝐵

𝐶
) + 𝑐3𝜂𝑥∗ (1 −

𝐶

𝐷
)  

−(1 − 𝑞)𝜃𝑦∗ (1 −
1

𝐴
) − ((1 − 𝑞)𝜃𝑦∗ 𝐷

𝐴
) + (−𝑐1(𝜇 + 𝛼) + 𝑐2𝛼)𝑤  

+(𝛽𝑣∗ + 𝑐3𝜂 − 𝑐2(𝜇 + 𝜂 + 𝛿))𝑥  

+((1 − 𝑞)𝜃 + 𝑐1𝑞𝜃 − 𝑐3(𝜇 + 𝜃 + 𝛾))𝑦  

+(−𝛽 + 𝑐1𝑐𝛽 + 𝑐2(1 − 𝑐)𝛽)𝑣𝑥 (27) 
 

Multiplying the second equation of (13) by 𝑐1 and the first equation of (16) by 𝑤∗ gives (28). 

 

𝑐1(𝜇 + 𝛼)𝑤∗ = 𝑐1𝑐𝛽𝑣∗𝑥∗ + 𝑐1𝑞𝜃𝑦∗  

𝑐1(𝜇 + 𝛼)𝑤∗ = 𝑐2𝛼𝑤∗  (28) 
 

We can deduce that, 
 

𝑐1𝑐𝛽𝑣∗𝑥∗ + 𝑐1𝑞𝜃𝑦∗ − 𝑐2𝛼𝑤∗ = 0 (29) 
 

Now, multiplying the above equation by 𝐹1(𝑢) where 𝑢 = (𝐴, 𝐵, 𝐶, 𝐷)𝑇 and 𝐹1(𝑢) will be determined later 

yields (30). 

𝑐1𝑐𝛽𝑣∗𝑥∗𝐹1(𝑢) + 𝑐1𝑞𝜃𝑦∗𝐹1(𝑢) − 𝑐2𝛼𝑤∗𝐹1(𝑢) = 0 (30) 
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Next, multiplying the third equation of (21) by 𝑐2 and the second equation of (24) by 𝑥∗ gives (31). 

 

𝑐2(𝜇 + 𝜂 + 𝛿)𝑥∗ = 𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ + 𝑐2𝛼𝑤∗  
 
𝑐2(𝜇 + 𝜂 + 𝛿)𝑥∗ = 𝛽𝑣∗𝑥∗ + 𝑐3𝜂𝑥∗  (31) 

 

We can write (31) as (32). 

 

𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ + 𝑐2𝛼𝑤∗ − 𝛽𝑣∗𝑥∗ − 𝑐3𝜂𝑥∗ = 0   (32) 

 

Using the fact that 𝑐1𝑐 + 𝑐2(1 − 𝑐) = 1, the (32) becomes (33). 

 

𝑐2𝛼𝑤∗ − 𝑐1𝑐𝛽𝑣∗𝑥∗ − 𝑐3𝜂𝑥∗ = 0  (33) 

 

Now, multiplying the (33) by 𝐹2(𝑢) where 𝑢 = (𝐴, 𝐵, 𝐶, 𝐷)𝑇 and 𝐹2(𝑢) will be determined later yields (34). 

 

𝑐2𝛼𝑤∗𝐹2(𝑢) − 𝑐1𝑐𝛽𝑣∗𝑥∗𝐹2(𝑢) − 𝑐3𝜂𝑥∗𝐹2(𝑢) = 0 (34) 

 

Next, multiplying the last equation of (21) by 𝑐3 and the third equation of (24) by 𝑦∗ gives (35) 

 

𝑐3(𝜇 + 𝜃 + 𝛾)𝑦∗ = 𝑐3𝜂𝑥∗  

𝑐3(𝜇 + 𝜃 + 𝛾)𝑦∗ = (1 − 𝑞)𝜃𝑦∗ + 𝑐1𝑞𝜃𝑦∗  (35) 

 

We can state (35) as (36). 

 

𝑐3𝜂𝑥∗ − (1 − 𝑞)𝜃𝑦∗ − 𝑐1𝑞𝜃𝑦∗ = 0  (36) 

 

Multiplying the (36) by 𝐹3(𝑢) where 𝑢 = (𝐴, 𝐵, 𝐶, 𝐷)𝑇 and 𝐹3(𝑢) will be determined later yields (37). 

 

𝑐3𝜂𝑥∗𝐹3(𝑢) − (1 − 𝑞)𝜃𝑦∗𝐹3(𝑢) − 𝑐1𝑞𝜃𝑦∗𝐹3(𝑢) = 0 (37) 

 

Adding the (30), (34), and (37) into (27), we obtain (38). 

 

𝐹̇ = 𝜇𝑣∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (2 −

1

𝐴
−

𝐴𝐶

𝐵
− 𝐹1(𝑢) + 𝐹2(𝑢))  

+𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑞𝜃𝑦∗ (1 −

𝐷

𝐵
− 𝐹1(𝑢) + 𝐹3(𝑢))  

+𝑐2𝛼𝑤∗ (1 −
𝐵

𝐶
+ 𝐹1(𝑢) − 𝐹2(𝑢)) + 𝑐3𝜂𝑥∗ (1 −

𝐶

𝐷
+ 𝐹2(𝑢) − 𝐹3(𝑢))  

−(1 − 𝑞)𝜃𝑦∗ (1 −
1

𝐴
− 𝐹3(𝑢)) − ((1 − 𝑞)𝜃𝑦∗ 𝐷

𝐴
) (38) 

 

The functions 𝐹1(𝑢), 𝐹2(𝑢), and 𝐹3(𝑢) are chosen such that the coefficients of 𝑦∗ and 𝑤∗ are equal to zero. In 

this case, we have (39). 

 

𝐹1(𝑢) = 2 −
1

𝐴
−

𝐷

𝐵
, 𝐹2(𝑢) = 3 −

𝐵

𝐶
−

1

𝐴
−

𝐷

𝐵
, and 𝐹3(𝑢) = 1 −

1

𝐴
 (39) 

 

Finally, we get (40). 

 

𝐹̇ = 𝜇𝑣∗ (2 − 𝐴 −
1

𝐴
) + 𝑐1𝑐𝛽𝑣∗𝑥∗ (3 −

1

𝐴
−

𝐵

𝐶
−

𝐴𝐶

𝐵
)  

+𝑐2(1 − 𝑐)𝛽𝑣∗𝑥∗ (2 − 𝐴 −
1

𝐴
) + 𝑐3𝜂𝑥∗ (3 −

𝐶

𝐷
−

𝐵

𝐶
−

𝐷

𝐵
)  

− ((1 − 𝑞)𝜃𝑦∗ 𝐷

𝐴
) (40) 

 

Given that the geometrical mean equals or exceeds the arithmetical mean, 2 − 𝐴 −
1

𝐴
≤ 0 for 𝐴 > 0 and 2 −

𝐴 −
1

𝐴
= 0  if and only if 𝐴 = 1. Then, 3 −

1

𝐴
−

𝐵

𝐶
−

𝐴𝐶

𝐵
≤ 0 for 𝐴, 𝐵, 𝐶 > 0  and 3 −

1

𝐴
−

𝐵

𝐶
−

𝐴𝐶

𝐵
= 0 if and only 

if 𝐴 = 𝐵 = 𝐶 = 1. Also, 3 −
𝐶

𝐷
−

𝐵

𝐶
−

𝐷

𝐵
≤ 0 for 𝐵, 𝐶, 𝐷 > 0   and 3 −

𝐶

𝐷
−

𝐵

𝐶
−

𝐷

𝐵
= 0 if and only if 𝐵 = 𝐶 =
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𝐷 = 1 . Therefore, the maximum invariant set of the equations (2) on the set (𝐴, 𝐵, 𝐶, 𝐷) : 𝐹̇ = 0 is (1, 1, 1, 1), 

and 𝐹̇ ≤ 0  for 𝐴, 𝐵, 𝐶, 𝐷 > 0 and 𝐹̇ = 0 if and only if 𝐴 = 𝐵 = 𝐶 = 𝐷 = 1. According to the LaSalle 

Invariance Principle [34]-[36], in (2) endemic equilibrium point, 𝐸𝐸𝑃∗, is thus globally asymptotically stable 

if ℜ0 > 1.  

 

3.6.  Sensitivity analysis 

Sensitivity analysis is a crucial tool in understanding the robustness of epidemiological models, 

especially in determining how various parameters affect the basic reproduction number (ℜ0), which is a key 

indicator of disease transmission potential [37]. Numerous studies have demonstrated the importance of 

analyzing the sensitivity of model parameters in controlling infectious diseases, including tuberculosis (TB) 

[38], [39]. By identifying the most influential parameters, such as contact rates or treatment rates, researchers 

can better allocate resources and design targeted interventions. 

We perform sensitivity analysis of reproduction number ℜ0 in this section to see the effect of 𝜃 and 

𝜂 on ℜ0. The reproduction number ℜ0 is given by the following equation in (5), so that (41). 
 

ℜ0 =
𝛽𝜆(𝜇+𝜃+𝛾)((1−𝑐)(𝜇+𝛼)+𝑐𝛼)

𝜇[(𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂]
  (41) 

 

we look for the derivative with respect to 𝛽, we obtain (42). 
 

𝜕ℜ0

𝜕𝛽
=

𝜆(𝜇+𝜃+𝛾)((1−𝑐)(𝜇+𝛼)+𝑐𝛼)

𝜇[(𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂]
  (42) 

 

When (𝜇 + 𝛼)(𝜇 + 𝜃 + 𝛾)(𝜇 + 𝜂 + 𝛿) > 𝛼𝑞𝜃𝜂, we have 
𝜕ℜ0

𝜕𝛽
> 0. It means that ℜ0 increases when 𝛽 increases. 

After that, we look for the derivative with respect to 𝜂, we obtain (43). 
 

𝜕ℜ0

𝜕𝜂
= −

𝛽𝜆((1−𝑐)(𝜇+𝛼)+𝑐𝛼)((𝜇+𝛼)(𝜇+𝜃+𝛾)−𝛼𝑞𝜃)

𝜇((𝜇+𝛼)(𝜇+𝜃+𝛾)(𝜇+𝜂+𝛿)−𝛼𝑞𝜃𝜂)
2   (43) 

 

When 𝛽𝜆((1 − 𝑐)(𝜇 + 𝛼) + 𝑐𝛼)((𝜇 + 𝛼)(𝜇 + 𝜃 + 𝛾) − 𝛼𝑞𝜃) > 0, we have 
𝜕ℜ0

𝜕𝜂
< 0. It means that ℜ0 

decreases when 𝜂 increases.  

Biologically, this means that infected individuals which are medicated have great negative influence 

on the spread of the tuberculosis. Figure 2 shows the relationship among ℜ0, 𝜃, and 𝜂 when we set  
𝜇 = 0.05, 𝜆 = 1, 𝛽 = 0.03, 𝛼 = 0.2, 𝑐 = 0.9, 𝛾 = 0.12, 𝑞 = 0.5, 𝛿 = 0.5, 𝜂 = 0.09, and 𝜃 = 0.02. 
 

3.7.  Numerical simulation 

Numerical simulations play a critical role in validating theoretical results and providing visual insights 

into the dynamic behavior of infectious disease models. They help demonstrate how different parameter values 

affect the trajectory of the disease over time, especially in models of complex diseases such as tuberculosis 

(TB) [40]. Previous studies have shown the importance of simulating TB models to understand the long-term 

effects of interventions and the behavior of disease transmission in different population groups [41], [42]. By 

adjusting key parameters such as the transmission rate (𝛽) and the medication rate (𝜂), we can observe how 

these factors influence the stability of the disease-free and endemic equilibria. 

We will give some simulations to illustrate the theoretical analysis of (2). First, we set 

 𝜇 = 0.05, 𝜆 = 1, 𝛽 = 0.03, 𝛼 = 0.2, 𝑐 = 0.9, 𝛾 = 0.12, 𝑞 = 0.5, 𝛿 = 0.5, 𝜂 = 0.09, 𝜃 = 0.02 and we have 

ℜ0 = 0.7733 < 1. Figure 3 presents the trajectory plot of (2) when ℜ0 < 1. Figure 3 illustrates how (2) 

trajectory map converges to the non-endemic equilibrium. In other words, as Theorem 1 illustrates, the disease 

eventually disappears from the population. 

Second, we change the value of 𝛽 and 𝜂. We choose  𝛽 = 0.43, 𝜂 = 0.01 and we have  
ℜ0 = 12.6023 > 1. Based on Theorem 2, when ℜ0 > 1 indicates that the disease will persists in the 

population. Figure 4 confirms the trajectory plot of (2) when ℜ0 > 1. All the population compartments 

converge to their endemic equilibrium. 

From Figures 3 and 4, we can easily see that the rate of infected individuals perform medication 𝜂 and 

the contact rate 𝛽 have significant effect on the dynamics of TB population. Exposed, infected, and medicated 

subpopulations in TB dynamics experience a decrease in population numbers from the initial value until they 

reach a stable condition at the equilibrium point. When we decrease the value of 𝜂,  the number of exposed and 

infected individuals increase. This show that the administration of medication has negative influence on the 

spread of the TB disease. While we increase the value of 𝛽, the number of exposed and infected individuals 

increase. This show that the contact rate has positive influence on the spread of the TB disease. 
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Figure 2. The relationship graph among ℜ0, 𝛽, and 𝜂 
 
 

  
 

Figure 3. The trajectory plot of the (2) when ℜ0 < 1 

 

Figure 4. The trajectory plot of the (2) when ℜ0 > 1 

 

 

4. CONCLUSION 

This study analyzes tuberculosis (TB) dynamics using a compartmental SEIM model that divides the 

population into four classes: susceptible, exposed, infected, and medicated. The mathematical analysis 

identifies two equilibrium points: endemic and non-endemic. The stability of these points is evaluated using 

Lyapunov functions, demonstrating global stability under specific conditions. The non-endemic equilibrium is 

globally stable when ℜ0 < 1, suggesting disease eradication, while the endemic equilibrium is stable when 

ℜ0 > 1, indicating persistent TB transmission. The numerical simulations and sensitivity analyses reveal that 

reducing the contact rate significantly decreases the spread of TB, while increasing the percentage of patients 

adhering to medication reduces transmission effectively. However, eradicating TB requires a multifaceted 

approach that goes beyond promoting medication adherence. Strategies must include reducing contact rates 

between vulnerable and infected individuals through targeted public health interventions. 

From a public health perspective, this study underscores the importance of early detection and 

effective treatment strategies. Public health authorities should ensure timely contact investigations and adopt 

proactive measures to limit the spread of TB. Moreover, addressing challenges such as medication toxicity and 

ensuring adherence are critical for achieving sustained TB control. Future research should explore the 

integration of vaccination dynamics and resistance patterns to enhance the model's applicability in diverse 

epidemiological settings. 
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