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 Fatty liver disease is caused by increased liver buildup or weight above  

5-10%. This disorder is widespread in people with diabetes, overweight 

persons, and metabolic syndrome patients. Clinical decision support systems 

can improve liver failure diagnosis and prediction to reduce this situation. 

Many liver failure models have drawbacks, and liver failure prediction is 

still a problem. This work uses four large open-access critical care patient 

datasets to create and verify liver failure risk prediction models. This study 

aims to construct a clinically applicable diagnostic and predictive model that 

evaluates the probability or risk of liver failure in intensive care unit (ICU) 

patients using extreme gradient boosting (XGBoost), artificial neural 

networks (ANN), multi-layer perceptron (MLP), Modular Neural Network 

(MNN), and generalized feed forward (GFF). We evaluated performance 

metrics using these models: accuracy, sensitivity, specificity, and predictive 

accuracy. 
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1. INTRODUCTION  

Nonalcoholic fatty liver disease (NAFLD) may develop several clinical and pathological symptoms 

similar to those of alcoholism. It is caused by fat buildup, primarily triglycerides in the hepatocytes, and 

individuals may develop superficial hepatic steatosis lesions, nonalcoholic steatohepatitis (NASH), and 

cirrhosis. Diabetes type 2 (DM-2) and obesity are the main risk factors for NAFLD, the hepatic manifestation 

of metabolic syndrome, which is rising alongside these two disorders. A multisystemic NAFLD is associated 

with metabolic diseases, including overweight and metabolic syndrome. The disorder may cause hepatic 

steatosis, NASH, severe fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenic process mirrors 

alcohol-induced liver damage in non-drinkers. NAFLD is also known as nonalcoholic steatohepatitis, 

diabetic hepatitis, nonalcoholic illness, and fatty liver.  

It may be hepatic steatosis or NASH, marked by high necro-inflammatory activity. Steatohepatitis is 

merely one stage of NAFLD, and its primary clinical consequences are the tendency to proceed to cirrhosis 

and liver failure. Both illnesses have the potential to either regress or advance to hepatic cirrhosis, a condition 

that may lead to liver failure, portal hypertension, and hepatocellular cancer [1]. Although the prevalence of 

viral causes is decreasing, NAFLD remains the most common cause of chronic liver disease (CLD). This 

increasing trend is associated with changes in Western lifestyle, such as high rates of obesity and sedentary 
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behavior. NAFLD is a condition that affects the liver and is linked with metabolic syndrome (MS). It can 

occur in individuals who are slim and not diabetic, although it might have a genetic basis [2]. Insulin 

resistance (IR) is a medical condition that is linked to the development of multiple sclerosis (MS). IR also 

affects the liver, leading to the development of NAFLD. Due to this connection, it has been suggested that 

the term NAFLD be replaced with metabolic-associated fatty liver disease (MAFLD) [3]. Figure 1 shows 

NASH increasing liver fibrosis risk factors. 

 
 

 
 

Figure 1. Representative image of healthy liver and NAFLD 

 
 

Most individuals remain symptomatic for a long time and unaffected by their everyday lives, 

making it difficult to diagnose and manage persons who progressively proceed to NASH, NASH-cirrhosis, 

and hepatocellular cancer. Despite breakthroughs in pathogenic pathways and finding liver fibrosis as the 

best predictor of disease development, regulatory bodies have not authorized particular therapies. Lifestyle 

management for weight reduction is the only therapy outside controlled studies [4]. NAFLD is a condition 

that is diagnosed in individuals who do not have a history of alcohol consumption and are not affected by any 

specific conditions that cause fatty liver, such as viral hepatitis, drug-induced liver disease, total parenteral 

nutrition, hepatolenticular degeneration, and autoimmune liver disease. To confirm the diagnosis, liver 

imaging that fulfils the criteria for diffuse fatty liver is required. The patient in question has been officially 

diagnosed with fatty liver by two experts from the hepatology department of a lower-tier hospital in Urumqi 

after assessing the physical examination results [5]. This diagnosis is supported by the evidence of insulin 

resistance's involvement in hepatic steatosis, as seen in Figure 2. 

 

 

 
 

Figure 2. Role of insulin resistance in hepatic steatosis 

 

 

2. RELATED WORK 

NAFLD and metabolic syndrome (MetS) were suggested by Sookoian et al. [6]. An increasing 

amount of research means that genetic vulnerability and environmental exposure cause NAFLD. Typically 

co-occurs with MetS-associated traits, whether it causes or results from Reddy et al. [7] aimed to identify 

steatosis risk factors and measure their severity with fibrosis. The research comprised 195 fatty liver patients. 

The finding is based on hospital data assessing fatty liver risk factors. Steatosis was 15.8% at autopsy. 

Clinical Features and Natural History of Nonalcoholic Steatosis Syndromes by Falck-Ytter et al. [8] 

explained that liver illness may lead to cirrhosis and cause mortality. Current best estimates put NAFLD at 

20% and NASH at 2-3% in the general population. NAFLD, steatohepatitis, and metabolic syndrome were 

postulated by Marchesini et al. [9]. NAFLD patients without diabetes were consecutively monitored. 
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The logistic regression analysis showed that metabolic syndrome increased NASH risk. Multiple 

metabolic abnormalities may cause severe liver damage. To diagnose nonalcoholic steatohepatitis,  

Saadeh et al. [10] presented the utility of radiological imaging in NAFLD. NAFLD was included, excluding 

those with additional liver disorders and heavy alcohol use. Each patient underwent a comprehensive 

abdominal examination, including ultrasonography, computed tomography (CT), and Magnetic resonance 

imaging (MRI). NASH patients showed higher ferritin, aspartate aminotransferase, hepatocyte ballooning, 

and fibrosis. According to the research, no radiological modality showed differences between NASH and 

nonprogressive NAFLD. These radiological modalities only showed steatosis severity.  

Amarapurkaret et al. [11] reviewed the Asia–Pacific Working Party on NAFLD recommendations 

for assessing and managing NAFLD. This study shows that NAFLD is a severe Asia-Pacific public health 

issue. Asians with diabetes are less obese at a younger age than Caucasians but have more complications and 

untimely mortality. According to Reddy et al. [12], NAFLD from Steatosis to Cirrhosis is dangerous. For the 

illness rate in Americans, early intervention should enhance physical activity and apply nutritional and anti-

obesity strategies. Ultrasonography may be utilized in patients with normal alanine transaminase (ALT) 

levels. After multiple investigations using American data, the researchers concluded that all patients should 

focus on decreasing belly girth rather than significantly lowering body weight, which requires lifelong 

maintenance of these favorable improvements. Gramlich et al. [13] describe the pathologic hallmarks of fibrosis 

in NAFLD. Two hematopathologists blindly examined liver biopsy specimens using a 19-item pathological 

procedure and a second methodology. Univariate and multivariate studies showed that 21.2% of 132 NAFLD 

patients had advanced fibrosis. Continuous hepatocyte damage is the most conspicuous pathological sign of 

hepatic fibrosis in NAFLD patients—liver disease phases. Zhu et al. [14] validated that NAFLD prevalence was 

20.52%, demonstrating vital fatty liver index (FLI) predictive values for ultra-monographic diagnosis. 

Noninvasive indexes can help select potential people before imaging tests, reducing costs. 

Zhu et al. [15] NAFLD prevalence and economy to determine whether adult NAFLD prevalence is 

related to national income. They analyzed PubMed to find suitable records published before September 2014. 

The global prevalence of NAFLD was 24.24%. The research revealed that males had a greater NAFLD 

prevalence than females, particularly in Europe. This research offers a unique epidemiologic viewpoint on 

NAFLD worldwide. Pan et al. [16] predicted NAFLD risk. Globally, it is a frequent liver condition with no 

good prediction or diagnostic tools. The cross-sectional research suggests a noninvasive NAFLD screening 

technique. There were 2,446 participants, 574 of whom had NAFLD. A risk prediction nomogram model was 

created using multivariable logistic regression analysis to detect NAFLD risk variables. To develop a model 

for predicting the risk of NAFLD, the researchers integrated various parameters such as demographic, 

clinical, and dietary factors identified in previous studies. They also included nutritional characteristics to 

establish a nomogram model to predict the risk of NAFLD. Zelber-Sagi et al. [17] suggested a population-

based investigation on primary NAFLD prevalence and biochemical and anthropometric parameters. Its main 

clinical consequences are the rising frequency of NAFLD and the associated risk of cirrhosis and liver 

failure. Due to the difficulty of excluding excess alcohol intake, the epidemiological investigation of NAFLD is 

suited for the Israeli community, which has minimal alcohol consumption. NAFLD is common among Israelis 

and linked to metabolic syndrome. ALT significantly underestimates the frequency of NAFLD. The noise of the 

images was removed from the photos to identify the exact wound and get a correct diagnosis [18]. 

Karunasri et al. [19] proposed the epidemiology of NAFLD. Hepatocellular carcinoma (HCC) and 

NAFLD are the top two reasons for liver transplantation in the United States. NAFLD is caused by metabolic 

syndrome (MS), and it affects 25-30% of the population. The disease occurs in the liver and shares many risk 

factors with multiple sclerosis. Ismaiel et al. [20] presented NAFLD prediction using machine learning 

categorization and random forest analysis. AIP has been tested as a noninvasive NAFLD predictor in a few 

trials. Lallukka et al. [21] Jarvinen's idea links insulin resistance syndrome traits to NAFLD prediction. It 

includes dataset screening methods. Finally, ultrasonography-based longitudinal studies, especially in Asian 

populations, show that NAFLD predicts T2DM regardless of age or weight. Cho et al. [22] used regression in 

machine learning with specific regression analysis implementations to portray. It gives many NAFLD 

diagnostic methods. It has various datasets. Gallstone disease and unexplained deep venous thrombosis may 

increase the risk of NAFLD. 
 

 

3. METHOD 

3.1.  Objectives 

This work aims to develop a clinically relevant diagnostic and predictive model that estimates the 

likelihood or risk of liver failure for a patient in an intensive care unit (ICU) using machine learning (ML) 

and deep learning (DL) models. The developed models are designed to output a finite 0-100 liver failure risk 

index (LFRI). The higher the value of the LFRI, the more likely the patient will experience liver failure. 
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3.2.  Overview of liver functionality 

It is vital to understand liver functionality to understand these realities of liver failure and the importance 

of identifying its failure well in advance. The liver is a solid organ and gland considered one of the most 

essential organs in the human body. It is comprised of two lobes. It is situated above the right of the stomach 

(right upper quadrant) and below the diaphragm. Detoxifying toxins and metabolizing medications in the liver is 

essential for overall health. Its primary functions include bile production, which helps the body absorb fats, 

proteins, carbohydrates, and vitamins. It also absorbs and metabolizes bilirubin, creates blood-clotting factors 

(coagulants), metabolizes fats, proteins, and carbohydrates, stores vitamins and minerals, filters blood, 

produces albumin, and removes aged and damaged red blood cells [23]. Detoxification of toxins and 

metabolism of medications are essential processes carried out by the liver to maintain overall body health. 

The hepatic artery supplies blood and oxygen from the heart and lungs to the liver, whereas veins provide 

blood-containing nutrients from the intestine [24]. 
 

3.3.  Problem statement 

In most cases, LT in liver failure patients could be avoided if the liver failure is detected in the early 

stages. However, detecting a failing liver is complicated in its early stages. Although liver function tests (LFTs) 

are commonly performed by healthcare providers, detecting liver disease at an early stage remains challenging. 

This is because abnormal LFTs may indicate other medical conditions besides liver-related issues. These 

conditions could include metastatic cancer, inflammatory or infectious diseases, and congestive heart failure. 

Hence, LFTs can be misleading and result in inappropriate treatments, leading to increased costs, morbidity, and 

death. Therefore, an accurate decision support system that can detect liver failure before its onset is necessary 

for the proper medication and medical treatment of patients. 
 

3.4.  Workflow 

The four datasets were downloaded from the Kaggle repository. These datasets were discussed in the 

Discussion Section. The NAFLD detection process includes data pre-processing, model design, and model 

evaluation; the entire procedure is in Figure 3. Data pre-processing is the first and most crucial stage in machine 

learning. These took raw data and made it usable for the machine learning model. The suggested architecture 

allows two-phase data pre-processing. Null values are deleted during data cleaning. The picture dataset is 

downsized to train the model more effectively. The photos are scaled to 224x224. Two steps are described in the 

model design. 
 

 

 
 

Figure 3. Model workflow 
 

 

3.5.  Models used 

3.5.1. Extreme gradient boosting (XGBoost)  

Open-source XGBoost functions and steps employ supervised machine learning to estimate or 

forecast results. Several XGBoost decision trees can anticipate the outcome. The machine learning system is 

trained using batch learning and generalized using a model-based method. Predictor-outcome models are 

created by using all relevant data. The test data is then generalized using these models. In computers, 

"extreme" means pushing processing power limits. Regression and classification employ "gradient boosting" 

to enhance poor prediction models. Good image classification performance has made XGBoost popular [25]. 

CNN extracts feature from the input, and XGBoost recognizes them for more accurate output, as shown in 

Figure 4. 
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Figure 4. The process of XGBoost 
 
 

3.5.2. Artificial neural networks (ANN) 

ANNs are computer architectures that are modeled after brains. It is built by a series of 

"neurons" (or "nodes"), which are organized into layers [26]. These neurons exhibit global behavior 

determined by the established connections between the various processing elements and the related 

parameters in the neural network architecture. Neural networks consist of layers of interconnected neurons, 

with weights assigned to the connections between the ith and thejthneuronsin a layer. These weights 

determine the strength of the connection between the neurons in successive layers. The input layer receives 

data, which is then processed and translated through one or more hidden layers before being outputted by the 

output layer. The complexity of the network determines the number of hidden layers and neurons per layer. 

Typically, a two-hidden-layer ANN design is used. Each node mathematically processes incoming data in 

each layer before being passed on to the next layer. Figure 5 shows an example of a typical two-hidden-layer 

ANN design, while Figure 6 illustrates how the jthnode in a layer processes incoming data (xi) from the 

previous layer. Steps involved: 

i. Initially, a summation of weighted values is computed, followed by the addition of the bias term (θj) to 

this summation, as per (1). 
 

𝑁𝑒𝑡𝑗 = 𝑃𝑚 𝑥𝑖𝑗 ∗ 𝑤𝑖𝑗 + 𝜃𝑗 (𝑗 = 1,2, … . 𝑛)  (1) 
 

ii. A mathematical 'transfer function' transforms Netj. This function normalizes all network inputs and 

outputs to a range. It helps the neural network discover data patterns and trends better than 50–500 

values. Many transfer functions work for this. For reasons explained under model development, a 

sigmoid function is employed in this attempt, as illustrated in (2). 
 

 𝑓(𝑥) =
1

(1+ 𝑒−𝑥)
  (2) 

 

iii. After creating a neural network for an application, it is necessary to use random starting weights for 

training. These models are popular because they learn from input data patterns. Network activity can be 

monitored or unsupervised. Supervised training uses the intended output and inputs to optimize network 

weights for the least output error. This type of training can be used for function approximation, 

regression analysis, time series prediction, and pattern and sequence recognition. On the other hand, 

unsupervised training is used to make sense of inputs and characterize "unlabeled" data. It is used for 

grouping and anomaly detection. 
 

 

 

 

Figure 5. General structure of two hidden layer ANN 
 

 
 

Figure 6. Data processing in a neuron 
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3.5.3. Multi-layer perceptron model (MLP) 

Feedforward artificial neural networks with three or more layers are MLPs. Each hidden and 

output neuron has a non-linear activation function. Including multiple layers and non-linear activation, 

functions set MLP apart from standard linear Perceptron, enabling these networks to discuss data that isn't 

linearly separable. MLPs are universal function approximators and can be applied to develop mathematical 

models using regression analysis. These networks are well-suited for various modeling tasks, including 

pattern classification, prediction, and function approximation. Pattern classification is concerned with the 

data type divided into discrete classes. Prognosis is related to forecasting time series data when the current 

and previous trends are known. In contrast, function approximation involves modeling the relationship 

between the variables [27]. 

 

3.5.4. Generalized feed forward ANN model (GFF) 

A GFF neural network is an ANN where the unit connections do not form a cycle, such as 

recurrent neural network models [28]. In this simple ANN, data moves from the input nodes to the output 

nodes via the hidden nodes. Unlike MLP, which is based on perceptron, this network uses a generalized 

shunting neuron (GSN) model as its computational unit. Shunting neurons can create complex, non-linear 

decision boundaries to help the GFF neural network design classify intricate patterns, predict time series, 

recognize patterns, and mine data dynamically. 

 

3.5.5. Modular neural network model (MNN) 

MNN is a particular class of MLP in which several parallel MLP sare used to process the inputs 

and then recombine the results, as shown in Figure 7. This process forms some structure within the 

topology, which helps develop a specialized function in each submodule. Divide and conquers corporate 

approach has many advantages to a neural network, such as scalability, robustness, and flexibility in design 

and implementation. 

Moreover, these networks require fewer weights than an MLP to build a network of similar size 

because of partial interconnection between its layers. Hence, this reduces the necessary training exemplars and 

helps speed up the training times. However, this network can be segmented into modules in many ways, and it 

is unclear how to best design the modular topology based on the data [29]. Figure 7 shows a modular neural 

network architecture with' k' modules. 

We developed and used XGBoost, ANN, MLP, GNN, and MNN model architectures in this 

research. We repeatedly modified model parameters for each model design. Typical parameters that changed 

iteratively include the number of hidden layers and their processing parts. Model development began with 

basic model construction. Neural network models and then repeatedly changed the parameters to enhance 

their complexity. We constructed models with two hidden layers, then three, and so on. We also tried 

increasing the number of processing components for each hidden layer from 5 to 50 to generate alternative 

models. Finally, the validation dataset was used to compare the performance of all these models to choose the 

best one. The first and second hidden layers with 10 and 2 processing components produced the best models 

in this investigation. Figure 8 explains the whole neural network model development process using different 

architectures and validation for analyzing its performance. 

 

 

 
 

Figure 7. Modular neural network architecture 
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Figure 8. Process of model development and validation 

 

 

4. RESULTS 

This study validated the developed models against different performance metrics such as 

sensitivity, specificity, and predictive capacity. The description below shows a comparative analysis of 

various developed models regarding these performance metrics and LFRI plots obtained for the best model. 

As explained in the 'Model Development' section, we have created multiple models by iteratively changing 

different parameters of neural network architectures and validated these developed models with the ICU 

validation dataset. Table 1 shows the performance metrics–sensitivity (St) and specificity (Sp)-obtained for 

some of the developed models, which were configured with two, three, and four hidden layers and six, four, 

and three processing elements (PEs) in each of these hidden layers respectively. Table 2 includes the model 

performance metrics calculated for the best models developed by configuring the various neural network 

model architectures with two hidden layers and 10, 2 processing elements in the first and second hidden 

layers. It was evaluated for its predictive capacity. 

 

 

Table 1. Performance of St and Sp metrics 
Models 2 Hidden layers 3 Hidden layers 4 Hidden layers 

4 PEs in each hidden layer 4 PEs in each hidden layer 3 PEs in each hidden layer 

St Sp St Sp St Sp 

XGBoost 73.2% 68.5% 71.4% 64.3% 70.4% 61.7% 
ANN 74.6% 69.9% 73.1% 67.4% 71.3% 63.6% 

MLP 75.2% 71.5% 72.7% 65.3% 68.1% 64.2% 

GFF 69.5% 70.8% 65.2% 66.7% 63.6% 66.3% 
MNN 76.8% 35.6% 74.8% 33.2% 72.4% 29.7% 

 

 

Table 2. Performance metrics for the best models 
Models 2 Hidden layers Predictive capacity 

2 PEs in each hidden layer 

St Sp 

XGBoost 81.2% 68.5% 81.8%(N=515) 

ANN 84.6% 69.9% 85.5% (N=532) 
MLP 83.3% 77.5% 83.5% (N=525) 

GFF 76.1% 81.6% 80.1% (N=546) 

MNN 91.8% 42.9% 90.3% (N=522) 

 
 

4.1.  Results obtained 

Table 3 shows three evaluation metrics obtained for various methods as described. With the help of 

a confusion matrix, evaluation metrics have evolved: accuracy, sensitivity, and specificity values of different 

machine learning methods for NAFLD prediction from Lipids data. Table 4 represents the accuracy, 

sensitivity, and specificity values of other machine learning methods for NAFLD prediction from hormonal 

data. These metrics were evaluated by using the confusion matrix. Table 4 describes the three metrics with 

various models. Table 5 accuracy, sensitivity, and specificity values of different machine learning methods 

for NAFLD prediction from glycans data. Table 6 accuracy, sensitivity, and specificity values of other 

machine learning methods for NAFLD prediction from fatty acids data. 

Data 
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Table 3. Evaluation metrics for the lipids data 
Models Accuracy Sensitivity Specificity 

XGBoost 0.80 0.84 0.91 
ANN 0.67 0.79 0.77 

MLP 0.87 0.90 0.92 

GFF 0.70 0.80 0.84 
MNN 0.89 0.93 0.94 

 

Table 4. Evaluation metrics for the hormonal data 
Models Accuracy Sensitivity Specificity 

XGBoost 0.53 0.69 0.77 
ANN 0.49 0.69 0.66 

MLP 0.55 0.68 0.81 

GFF 0.53 0.66 0.76 
MNN 0.56 0.67 0.84 

 

 

 

Table 5. Evaluation metrics for the glycans data 
Models Accuracy Sensitivity Specificity 

XGBoost 0.55 0.62 0.74 

ANN 0.44 0.63 0.53 

MLP 0.55 0.55 0.78 
GFF 0.48 0.58 0.68 

MNN 0.57 0.58 0.83 
 

Table 6. Evaluation metrics for the fatty acids data 
Models Accuracy Sensitivity Specificity 

XGBoost 0.50 0.60 0.74 

ANN 0.43 0.60 0.59 

MLP 0.54 0.58 0.78 
GFF 0.44 0.52 0.72 

MNN 0.59 0.66 0.81 
 

 

 

Comparison of different datasets for the MNN model 

Table 7 shows the MNN values obtained from lipids, hormones, glycans, and fatty acids datasets. 

Among XGBoost, ANN, MLP, GFF, and MNN, the MNN had the highest accuracy in all the various lipids, 

hormones, glycans, and fatty acids. Using Table 7 values, we plotted Figures 9 and 10 as a graph for 

accuracy, sensitivity, and specificity with various datasets for the MNN Model. 
 

 

Table 7. Comparison of Datasets with MNN 
MNN Lipids Hormones Glycans Fatty acids 

Accuracy 0.89 0.56 0.57 0.59 

Sensitivity 0.93 0.67 0.58 0.66 

Specificity 0.94 0.84 0.83 0.81 

 
 

 
 

Figure 9. Graph for accuracy by comparing with 

various datasets for the MNN model 
 

 
 

Figure 10. Graph for Sp and St comparison of 

different datasets for the MNN model 

 

 

 

 

 

5. DISCUSSION 

It is essential to detect liver failure and dysfunction early to provide timely medical intervention 

and improve patient outcomes. In our research, we have developed a neural network modeling technique to 

predict the likelihood of liver failure in ICU patients before it occurs. This approach is more effective than 

previous methods since it accurately evaluates the impact of various inputs or independent factors on the 

output or dependent variables [15], [16].  

Some previous approaches tried to use organ failure scoring systems to evaluate the illness severity 

among liver failure patients. As the scoring systems are tended for broader organ systems, the high values 

of these scores indicate that the patient is at critical (without a section of the various dimensions of the 

scoring system that contributes to the final composite value). Therefore, these prior approaches potentially 

fail to identify the patients at the highest risk for a specific acute condition with high sensitivity and 

specificity [20]. Low-sensitivity diagnostic tools often fail to determine the correct outcome for any patient, 

leading to uncertainty in benefiting from early treatment. We have overcome this drawback by generating a 
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predictive model for identifying liver failure patients. We achieved promising results of 83.3% sensitivity at 

a specificity of 77.5% and correctly identified 83.3% (N=629) of patients with liver failure in the ICU 

validation set. The LFRI successfully predicted the onset of liver failure in 83.5% (N=525) of the 629 

patients, with a median of 17.5 hours before its start [21], [24], [27]. 

Recently, various ML techniques have been used to develop prediction models for the early 

detection of liver failure. However, most of these models were not designed or customized for the intensive 

care unit (ICU) patient population [30]. The ICU is a crucial department in a hospital, with each unit having 

a unique atmosphere that reflects the specific surgical techniques medical professionals employ. ICU teams 

comprise highly skilled intensive care doctors, specialists, and nurses skilled in providing care to critically 

ill patients using specialized, technical, and monitoring equipment. Unlike general patients, daily monitoring 

of ICU patients is necessary because optimizing patient statuses, including but not limited to 

hemodynamics, ventilation, and nutrition, is critical to improving the survival of patients [31]. So, the 

surveillance and monitoring of ICU patients are essential, and the inability to detect or predict liver failure in 

these patients may lead to catastrophic consequences. As explained in the 'Model Training and Validation Set 

Generation' section, we have addressed this challenge by developing models from abroad ICU patient 

populations with and without liver failure. Systematic reviews evaluating this kind of approach all conclude 

that such studies have the characteristics of deficiencies in study design, adequate statistical methodology, and 

poor reporting [32]. 

Moreover, this validation makes the developed models only work effectively for a particular 

healthcare institution or a small subset of patients, impacting overall clinical utility. It is necessary to see 

how well a model performs with patients from a different but "plausibly related" population. Therefore, 

impact studies should not be considered until the robustness and generalizability of the developed model are 

verified with one or more external validation databases [33]. 

Further, all the previous approaches developed and validated the predictive models using datasets 

that included an almost equal number of liver and non-liver failure patients. Testing a developed predictive 

model with a validation dataset with an equal ratio of with and without liver failure conditions would 

artificially inflate the sensitivity and specificity values. For example, a predictive model can quickly achieve 

50% sensitivity for such validation sets by putting '1' to the entire dataset without considering any input 

values/predictors [34]. However, in the real world, a very poor prevalence of liver failure patients, between 

1.0 and 5.0%, can be seen in the ICU patient population. In this study, there were only 755 patients 

diagnosed with liver failure in the ICU out of 81,135 patient admissions. The ratio (approx .0.01) of patients 

with liver failure to those that do not have the condition is thus much less than the near 0.5 ratios 

implemented in most prior approaches. Hence, our study aims to address the previous limitation by 

validating the LFRI models with a representative real-world ICU patient dataset as described. 

 

 

6. CONCLUSION  

In conclusion, neural network models developed in this effort have been demonstrated to predict the 

likelihood of liver failure for a patient in ICU many hours before standard screening protocols. Data is 

accomplished by considering several data sources from the patient's electronic medical record (EMR), 

including but not limited to laboratory results and vital signs. The performance of this model has also been 

validated externally using data from critical care patients from a completely different database and achieved a 

high sensitivity of 83.3% at a specificity of 77.5%. Moreover, this model has identified 83.5% (N=525) of 

liver failure patients with a median of 17.5 hours before the onset of liver failure. Achieving such a high 

performance when validated with an external database of patient records substantiates that our approach has 

built a promising generalized model for predicting liver failure in the ICU population. Coordinating 

evidence-based remedies and performance enhancement measures with such models can significantly 

improve ICU patient outcomes and help learn healthcare systems. 
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