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 The criteria used to categorize patients as either hypertensive or 

normotensive were changed in 2017 by the American Heart Association and 

the American College of Cardiology (AHA/ACC). The updated guidelines 

lowered the criteria by which individuals are classified as hypertensive; 

systolic blood pressure (SBP) cut-off from ≥140 mmHg to ≥130 mmHg and 

diastolic blood pressure from ≥90 mmHg to ≥80 mmHg. The purpose of this 

study was to investigate what effect these changes in diagnostic criteria had 

on the ability of supervised learning to predict cardiovascular disease. Three 

models were developed and tested. Two models using a binned hypertension 

measure based on either the AHA/ACC new released guidelines or the Joint 

National Committee on the Prevention, Detection, Evaluation, and 

Treatment of High Blood Pressure (JNC7) original guidelines. The third 

model used SBP as a continuous variable. Data from 68,657 patients was 

processed through decision tree algorithm to determine which model offered 

the best accuracy. For both female and male subjects, the model with SBP 

returned the best area under the receiver operator characteristic curve and 

overall better sensitivity and specificity values. Our results showed that 

changing the criteria by which individuals are classified as hypertensive or 

normotensive negatively impacted the ability of decision tree to predict 

cardiovascular disease in both females and males. 
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1. INTRODUCTION 

Cardiovascular disease (CVD) is the number one cause of death in the developed world [1]. The 

clinical end points of cardiovascular disease are myocardial infarction or stroke and often individuals do not 

know that they are at risk until such an event occurs [2]. Early efforts to predict cardiovascular disease used 

logistic regression analysis and often sought to predict cardiovascular death or myocardial infarction based 

upon the presence of cardiovascular disease risk factors. Common risk factors include a history of smoking, 

high serum cholesterol, high blood pressure, age and male sex [3]–[5]. In 1998, the Framingham Heart Study 

found that a model using total cholesterol, high-density lipoprotein cholesterol, age, sex, systolic blood 

pressure (SBP), diabetes mellitus, and smoking status was able to separate those who experience 

cardiovascular disease events from those who do not [6]. Despite these efforts, half of myocardial infarction 

and strokes occur in people who are not predicted to be at increased risk for cardiovascular disease [7]–[9]. 

For this reason, researchers have begun to apply machine learning algorithms to the task of cardiovascular 

disease prediction.  

https://creativecommons.org/licenses/by-sa/4.0/
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In 2017, Weng et al. [10] compared an established algorithm from the American College of 

Cardiology against four machine learning algorithms. They found that all four algorithms outperformed the 

established algorithm; the use of these techniques increased predictive accuracy as assessed by area under the 

receiver operating characteristic curve (AUC) by 1.7%-7.6%. These four algorithms also produced higher 

sensitivity and specificity values compared to traditional modeling techniques. Alaa et al. [11] combined  

5 common machine learning algorithms into a model that outperformed traditional prediction equations, 

including the Framingham Risk Score and Cox proportional hazard models, by up to 5%. Martins et al. [12] 

applied data mining techniques for cardiovascular disease prediction and found that the best technique was 

decision tree. 

Of the laboratory-based cardiovascular disease risk factors, blood pressure is the easiest to measure. 

Blood pressure also has the advantage of not requiring a blood draw or finger stick for assessment. Of the 

modifiable risk factors, hypertension also contributes to more cardiovascular disease deaths annually [13]. 

Between 2003 and 2017, blood pressure was categorized using recommendations from the 7th Report of the 

Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 

(JNC7) [14]. Under these guidelines, individuals with SBP ≥140 mmHg or diastolic blood pressure (DBP) 

≥90 mmHg were categorized as hypertensive. Patients were categorized as prehypertensive if their SBP was 

120-139 mmHg, or their DBP was 80-89. Individuals with SBP <120 and DBP <80 mmHg were categorized 

as normal.  

In 2017, the American Heart Association and the American College of Cardiology (AHA/ACC) 

released updated guidance [15]. Individuals are now categorized as hypertensive with SBP ≥130 mmHg or DBP 

≥80 mmHg. Individuals with SBP between 120 and 129 mmHg or DBP between 80 and 89 mmHg are now 

categorized with elevated blood pressure. Normal blood pressure remained the same. These new guidelines 

have not been universally accepted; the European Society of Hypertension’s 2021 practice guidelines 

recommend using the older values to diagnose hypertension [16]. The purpose of this study was to determine if 

categorizing patients as hypertensive using the JNC7 guidelines or the AHA/ACC guidelines provides an 

advantage over the use of SBP alone in predicting cardiovascular disease. This study has a secondary aim to 

establish clinical cut points, the criteria used to diagnose hypertension, using receiver operator characteristic 

(ROC) curves.  

 

 

2. RESEARCH METHOD  

2.1.  Data source 

The main goal of this study was to determine how the accuracy of the decision tree algorithm to 

predict cardiovascular disease is affected by the inclusion hypertension status as a categorical variable  

(high or normal) compared to the inclusion of SBP as a continuous variable. To investigate that, the CardioTrain 

data set was retrieved from Kaggle on September 23, 2021 [17]. The original data set includes data from 70,000 

patients from the European Union and includes the following continuous attributes: patient ID, age (days), 

height, weight, gender, SBP, DBP. Age in years and body mass index (BMI) were calculated and included in 

the continuous attributes. The data set also includes categorical attributes. Cholesterol and glucose were 

categorized as normal (1), above normal (2) and well above normal (3). Smoking, alcohol use, physical activity 

and cardiovascular disease were also included as binary variables; 0 indicated that this variable was false; 1 

indicated that this factor was present. Individuals were characterized as obese if their BMI was ≥30 kg/m2. 

Hypertension categories were created based on the AHA/ACC or JNC7 guidelines [14], [15].  

 

2.2.  Data processing 

The original CardioTrain data set contained 70,000 records. After cleaning the data, 68,657 records 

remained. BMI was used as an initial measure to remove data. Using Tukey’s hinge method, outliers (values 

below 14 kg/m2) were identified and removed. The highest BMI ever recorded was 105 kg/m2. Values above 

this were removed (n=29). Blood pressure readings and mean arterial pressure served as another method to 

remove noisy data. Blood pressure is recorded as SBP over DBP; SBP must be greater than DBP. Any 

instance where SBP was less than or equal to DBP was removed (n=1,248) as were any instances where 

either blood pressure value was 0 or negative (n=3). Records where SBP were not physiologically possible 

(n=50) were also removed. 

 

2.3.  Statistical analysis 

Binary logistic regression: data were entered into SPSS 28 (IBM, Armonk, New York, USA) for 

analysis. Binary logistic regression is a type of regression that finds relationships between the dependent 

variables and a dichotomous independent variable. Therefore, the independent variable is either 0 or 1 and 

the logarithm of the dependent variables are used as predictors. We use binary logistic regression to see 

which of the risk factors are significant in the model and therefore should not be omitted from future models. 
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Separate analyses were performed for each gender. Three binomial logistic regressions were performed with 

the presence of cardiovascular disease as the dependent variable and age, gender, cholesterol, glucose, 

obesity, and smoking entered in the model. A variable related to SBP was also included in each analysis; 

hypertension status per AHA/ACC guidelines was included in the first analysis, hypertension status per the 

JNC7 guidelines in the second and continuous SBP values in the third. Each analysis calculated odds ratios 

and 95% confidence intervals for the respective CVD risk factor. 

ROC analysis: each instance of binary logistic regression generated predicted probability scores that 

were used in ROC analysis to determine AUC for each model. ROC analysis with cardiovascular disease as 

the state variable and systolic and DBP as the test variable was used to calculate Youden’s index as in (1). 

Youden’s Index will yield the associated blood pressure value cutoff that generated the best sensitivity and 

specificity values for each dataset. A fourth model (Youden) using these clinical cut points to define 

hypertension was developed and compared to existing models.  

 

𝑌𝑜𝑢𝑑𝑒𝑛′𝑠 𝐼𝑛𝑑𝑒𝑥 =  Sensitivity + Specificity – 1  (1) 

 

Classification: decision tree algorithm was used to generate a contingency table for each model. In 

decision tree recursive partitioning is used to split the training set into segments by minimizing impurity.  

A node is considered pure if 100% of cases in the node fall into a specific category [18]. Each model 

underwent a test/train validation (50%/50%) and a cross validation with 10 sample folds. The values in the 

contingency table were used to calculate sensitivity, specificity, positive likelihood ratio, negative likelihood 

ratio, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated per 

Sheffler [19]. 

 

Sensitivity is the proportion of true positives out of all individuals with CVD. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2) 

 

Specificity is the percentage of true negatives out of all patients that do not have CVD 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3) 

 

Positive Predictive Value determines what percentage of positive tests are truly positive 

 

𝑃𝑃𝑉 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (4) 

 

Negative Predictive Value determines what percentage of negatives tests are truly negative 

 

𝑁𝑃𝑉 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (5) 

 

Positive likelihood ratio equals the probability that a positive test would be expected in a patient 

with the disease (true positive) divided by the probability that a positive test would be expected in a patient 

without the disease (false positive) 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 (6) 

 

Negative Likelihood Ratio is the probability of a patient with CVD testing negative (false negative) 

divided by the probability of a patient without CVD testing negative (true negative).  

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 =  
1−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 (7) 

 

2.4.  Supervised learning 

The dataset was imported into SPSS Modeler Version 18.3 (IBM, Armonk, NY, USA). Each data set was 

exposed to 13 classification algorithms. The software returned the AUC and model accuracy for the top 4 models. 
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3. RESULTS  

Table 1 shows subject characteristics for the CardioTrain dataset split by sex. In female patients, 

smoking was not a significant contributor to any model. Smoking remained in the analysis for consistency 

and because removal of smoking from the model did not alter any results. Fasting plasma glucose was 

entered as a categorical variable with three levels (normal, high and very high). Although high glucose was 

only significant in the AHA/ACC based model for both female and male subjects, very high glucose was  

a significant contributor, so this variable was kept in all models. The use of the AHA/ACC guidelines 

increased rates of hypertension in both females and males. Tables 2 and 3 include odds ratios and 95% 

confidence intervals for each risk factor in the three models of interest in females and males, respectively. 

Each blood pressure variable was a significant contributor to their respective models. In female subjects, 

individuals with hypertension were 3.1 AHA/ACC or 5.5 JNC7 times more likely to have cardiovascular 

disease compared to those without hypertension. For each mmHg increase in SBP, the odds of cardiovascular 

disease increased by 6.3%. In males, individuals with hypertension were 2.6 AHA/ACC or 5.6 JNC7 

 times more likely to have cardiovascular disease compared to those without hypertension. For each 

mmHg increase in SBP, the odds of cardiovascular disease increased by 6.5%. Although smoking is 

traditionally a risk factor, males who smoke had lower odds of being diagnosed with cardiovascular disease. 

The same was seen in females and males with glucose in the “very high” category more discussion in the 

discussion section. 

 

 

Table 1. Subject characteristics of the CardioTrain dataset 
Variable Female (n=44,721) Male (n=23,936) 

Categorical variables – n (%) 

Cardiovascular disease prevalence 22,008 (49.2%) 11,959 (50.0%) 
Obese 13,266 (29.7%) 4,692 (19.6%) 

Cholesterol  

Normal 33,029 (73.9%) 18,495 (77.3%) 

High 6,256 (14%) 3,045 (12.7%) 
Very High 5,436 (12.1%) 2,432 (10.2%) 

Fasting Plasma 

Glucose 

Normal 3,7802 (84.5%) 20,574 (86.0%) 

High 3,347 (7.5%) 1,719 (7.2%) 
Very High 3,572 (8.0%) 1,643 (6.9%) 

Current smoker 793 (2.0%) 5,244 (21.9%) 

Hypertension 
AHA/ACC 35,586 (79.6%) 20,397 (85.2% 
JNC7 14,777 (33%) 8,762 (36.6%) 

Continuous variables - Mean (SD) 

Age (Years) 53.4 (6.7) 53.1(6.9) 
Body mass index (kg/m2) 27.9(5.6) 26.7(4.5) 

SBP (mmHg) 125.9 (16.7) 128.1(16.5) 

DBP (mmHg) 80.8 (9.6) 82.2(9.3) 

 

 

Table 2. Odds ratios and 95% confidence intervals for all risk factors included in each model for the 

CardioTrain dataset in females. * Indicates significant at p<0.05 
 AHA/ACC JNC7 SBP 

Variable OR 
95%CI 

OR 
95%CI 

OR 
95% CI 

Lower Upper Lower Upper Upper Lower 

Age 1.066* 1.063 1.07 1.068* 1.064 1.072 1.057* 1.053 1.060 

Obese 1.577* 1.508 1.649 1.307* 1.246 1.371 1.228* 1.170 1.289 

Cholesterol 
High 1.666* 1.567 1.770 1.366* 1.281 1.456 1.431* 1.340 1.528 

Very high 3.570* 3.292 3.873 3.095* 2.841 3.372 3.019* 2.771 3.290 

Glucose 
High 1.088* 1.003 1.179 1.037 0.952 1.130 1.017 0.931 1.110 
Very high .728* .665 .797 0.768* 0.699 0.845 0.740* 0.673 0.814 

Current smoker 0.911 .781 1.063 .854 0.726 1.005 0.881 0.747 1.038 

Hypertension 
AHA/ACC 3.104* 2.938 3.279       
JNC7    5.554* 5.294 5.827    

   SBP       1.063* 1.061 1.065 

 

 

ROC analysis plots sensitivity against 1-specificity, the model that approaches the closest to the 

upper left-hand corner (closest to sensitivity and specificity values of 1) offers the best predictive 

performance. As is seen in Figure 1, the model based on the AHA/ACC guidelines performed worst. Based 

on visual inspection, the model based on the JNC7 guidelines performed similarly to the model based on 

SBP, although AUC values reported in Table 4 does show that SBP outperformed the JNC7 guidelines.  

The model with SBP as a continuous variable performed better than the models using hypertension status 

binned by either the AHA/ACC or JNC7 criteria for both females and males. In females, the AUC for SBP  
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was 0.793 (Std. Error=0.002, 95% CI=0.788-0.797) compared to an AUC of 0.722 (Std Error=0.002, 95%  

CI=0.717-0.726) for the AHA/ACC model and an AUC of 0.778 (Std. Error=0.002, 95%  

CI=0.773-0.782) for the JNC7 model. In males, the AUC for SBP was 0.693 (Std. Error=0.002, 95%  

CI=0.0.690-0.704) compared to an AUC of 0.772 (Std Error=0.002, 95% CI=0.766-0.778) for the AHA/ACC 

model and an AUC of 0.785 (Std. Error=0.002, 95% CI=0.779-0.791) for the JNC7 model.  

 

 

Table 3. Odds ratios and 95% confidence intervals for all risk factors included in each model for the 

CardioTrain dataset in males. * indicates significant at p<0.05 
 AHA/ACC JNC7 SBP 

Variable OR 
95%CI OR 

 

95%CI 
OR 

95% CI 

Lower Upper Lower Upper Upper Lower 

Age 1.055* 1.050 1.059 1.050* 1.046 1.055 1.045* 1.040 1.049 
Obese 1.823* 1.699 1.955 1.474* 1.367 1.589 1.402* 1.299 1.512 

Cholesterol 
High 1.938* 1.779 2.110 1.526* 1.392 1.672 1.529* 1.394 1.678 

Very high 3.484* 3.111 3.903 3.012* 2.671 3.396 2.955* 2.619 3.335 

Glucose 
High 1.155* 1.034 1.291 1.080 0.960 1.216 1.079 0.957 1.217 

Very high 0.650* 0.573 0.737 0.680* 0.596 0.777 0.651* 0.596 0.744 

Current smoker 0.857* .803 .915 0.787* 0.734 0.845 0.881 0.747 1.038 

Hypertension  
ACC/AHA 2.666* 2.455 2.895       

JNC7    5.614* 5.273 5.977    

   SBP       1.065* 1.062 1.067 

 

 

 
 

Figure 1. ROC curves for each model using the CardioTrain dataset, separated by sex 

 

 

Table 4. AUC for each model, seperated by sex 
 Female Male 
 AUC 95% CI AUC 95% CI 

AHA/ACC 0.722 0.717-0.726 0.697 0.690-0.704 

JNC7 0.778 0.773-0.782 0.772 0.766-0.778 
SBP 0.793 0.788-0.797 0.785 0.779-0.791 

Youden (not shown) 0.775 0.771-0.780 0.765 0.759-0.771 

 

 

Individual ROC analyses performed with systolic and DBP as the test variable and cardiovascular 

disease as the state variable generated coordinate points for the ROC curve which allowed for the 

determination of Youden’s Index and the associated systolic and DBP levels in females and males. For SBP, 

Youden’s index in females and males was 0.425 and 0.423, respectively. For both, 129.5 mmHg was the SBP 

value associated with Youden’s Index. For DBP, Youden’s index was 0.307 and 0.327 for females and 

males, respectively. For both genders, the associated DBP value associated with Youden’s index was 82.5 

mmHg and 84.5 mmHg for females and males respectively. Using these newly defined cut points, a 4th 

model (Youden’s) was created to define hypertension (≥130mmHg SBP; ≥83 mmHg DBP in females  

and ≥ 85 mmHg DBP in males) did not improve AUC over that associated with either the JNC7 model or the 

SBP model see Table 4. 
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Classification: The model based on SBP performed better in model accuracy for both genders 

according to AUC and classification analyses compared to either of the models where hypertension status 

was categorized by AHA/ACC or JNC7. Between the two binned hypertension variables, the JNC7 

guidelines performed better than the AHA/ACC guidelines in this dataset for both genders. Table 5 displays 

contingency table data from the cross-validation phase of the classification analysis including true positives, 

true negatives, false positives and false negatives. 

 

 

Table 5. Contingency tables for each model by sex 
  True positive True negative False positive False negative 

AHA /ACC Female 15,088 14,118 8,595 6,920 

Male 7,088 7,995 3,992 4,871 

JNC7 Female 14,505 17,932 4,781 7,503 
Male 8,113 9,133 2,844 3,846 

SBP Female 14,978 17,723 4,990 7,030 

Male 8,326 9,049 2,928 3,633 

Youden’s Female 15,765 16,709 6,004 6,243 

Male 8,769 8333 3,644 3,190 

 

 

Table 6 shows classification measures derived from contingency tables generated from these values, 

including sensitivity, specificity, PPV, NPV, positive likelihood ratio, negative likelihood ratio and accuracy. 

Sensitivity is the proportion of true positive tests out of all the individuals with a positive test. Positive 

predictive value (also known as precision) is the probability that a subject with a positive screening test truly 

has CVD. Negative predictive value is the probability that subjects with a negative test truly do not have 

CVD.  

In females, the use of the clinical cut points established by Youden’s Index offered increased model 

accuracy (72.6%) compared with AHA/ACC (65.3%) and JNC7 (72.5) models but did not beat SBP (73.1%). 

In males, the accuracy of this new model (71.4%) was greater than that established by AHA/ACC (63.3%) 

but did not exceed that of the JNC7 (72.1%) or SBP (72.6%) models. In females, this model increased 

sensitivity at the expense of specificity; in males the opposite occurred, sensitivity was lower than that of the 

SBP model, but specificity was higher. 

 

 

Table 6. Classification analysis showing contingency table derived measures 
 AHA/ACC JNC7 SBP Youden 

 Female Male Female Male Female Male Female Male 
Accuracy 65.3% 0.63% 0.73% 0.72% 0.73% 0.73% 0.73% 0.71% 

Sensitivity 0.69% 0.59% 0.66% 0.68% 0.68% 0.70% 0.72% 0.73% 

Specificity 0.62% 0.667% 0.790% 0.76% 0.78% 0.76% 0.74% 0.70% 
Positive likelihood ratio 1.8 1.8 3.1 2.85 3.1 2.85 2.7 2.4 

Negative likelihood ratio 0.5 0.61 0.43 0.42 0.4 0.4 0.38 0.38 

Positive predictive value 0.64% 0.64% 0.75% 0.74% 0.75% 0.74% 0.72% 0.70% 
Negative predictive value 0.67% 0.62% 0.71% 0.70% 0.71% 0.71% 0.72% 0.72% 

 

 

Table 7 shows the results from the two best supervised learning algorithms in female and male 

subjects for each model. In female subjects, and using the AHA/ACC model, the neural net algorithm 

matched the AUC found from ROC analyses (0.722) and performed slightly better in measures of accuracy 

(66.0% to 65.3%). For the JNC7 model, neural net was again superior to the other models tested; the 

resulting AUC value was 0.777 and the algorithm demonstrated 72.4% accuracy. Both values were slightly 

lower than those produced by decision tree. For the SBP model, neural net again returned the best AUC 

(0.797) and accuracy (73%); supervised learning algorithms met the accuracy and exceeded the AUC of the 

decision tree classification analysis. In male subjects, logistic regression and linear support vector machine 

(LSVM) were the best performing algorithms in both the AHA/ACC model and the JNC7 model. The AUC 

values for each model matched the AUC of the decision tree algorithm (AHA/ACC AUC=0.697; JNC7 

AUC=0.772). The accuracy of these algorithms was slightly higher in the AHA/ACC model (64.1%) versus 

63.0% in the classification analysis, however, the accuracy of these algorithms in the JNC7 model (71.9%) 

was slightly lower than the 72.0% accuracy returned in the classification analysis. In the SBP model, the 

algorithms returning the best AUC and accuracy values were logistic regression and neural net. As with the 

JNC7 findings, supervised learning provided a slightly higher AUC (0.787 vs. 0.785) and a slightly lower 

accuracy (72.3% vs. 73%). 
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Table 7. AUC and accuracy determined for each model using supervised learning algorithms 
Model AUC Accuracy Algorithm 

Female    
AHA/ACC 0.722 66.0% Neural net 

 0.722 65.8% LSVM 

JNC7 0.777 72.4% Neural net 
 0.775 72.2% Tree-AS 

SBP 0.797 73.0% Neural net 

 0.695 64.2% LSVM 
Male    

AHA/ACC 0.697 64.1% Logistic regression 

 0.697 64.1% LSVM 
JNC7 0.772 71.9% Logistic regression 

 0.772 71.9% LSVM 

SBP 0.787 72.3% Logistic regression 
 0.784 72.0% Neural net 

 

 

4. DISCUSSION 

Our results show that changing the criteria by which individuals are classified as hypertensive or 

normotensive negatively impacted the ability of decision tree and other algorithms to predict cardiovascular 

disease in both females and males. Both models using binning by hypertension status performed worse than 

the model in which SBP was entered as a continuous variable. Although it is convenient to create arbitrary 

cut points, and to classify individuals as hypertensive based on these values, this analysis shows that this 

technique may decrease the prognostic ability of the model. Altman and Royston recommend that 

dichotomizing continuous variables be avoided [20]. Consider the case of two individuals with SBP values of 

192 mmHg and 131 mmHg, both would be considered hypertensive by the AHA/ACC model. Using the SBP 

model, where each mmHg above the cut point increased risk by 6.3% would clearly show that the individual 

at 192 mmHg demonstrates 4 times greater odds of developing cardiovascular disease (62*0.065=4.03) 

compared to the individual at 131 mmHg who only has a slight increase (6.3%) in the odds of developing 

cardiovascular disease.  

To further examine the effects of binning verses using continuous variables in a model a second dataset 

was evaluated with supervised learning. The Framingham dataset was downloader from Kaggle on February 20, 

2022 [21], and it has been used in several recent studies [22]–[24]. The Framingham heart study is a longitudinal 

cohort study of cardiovascular disease risk, which includes continuous variables for age, cholesterol, SBP, BMI 

and fasting plasma glucose [25]. These variables were dichotomized using standard clinical cut points. Gender and 

smoking status are also included as categorical variables Two models were produced, one with continuous 

variables and one where the continuous variables were dichotomized. Each model was run through 5 supervised 

algorithms, discriminant analysis, chi-square automatic interaction detection (CHAID), Tree-AS, decision list and 

quick, unbiased, efficient statistical tree (QUEST). In all cases, the model with the continuous variables performed 

better than the binned model in terms of AUC and accuracy measures.  

Most traditional risk factors did contribute to these models as expected, including age, cholesterol, 

obesity, and hypertension status [26]. Traditionally those that smoke or those with elevated blood glucose 

values would be at increased risk of cardiovascular disease. In females, smoking was not a significant 

contributor to any model, possibly because the rates of smoking in females were so low in this sample (2%). 

In males, smoking was a significant contributor to all models, but smokers showed decreased odds of 

cardiovascular disease; this finding remained significant after correction for age. Those categorized in the 

very high blood glucose category also saw decreased odds of cardiovascular disease. It is possible that those 

individuals with these risk factors were younger or see their healthcare practitioners more often and thus get 

better care, but more research is needed to clarify these findings.  

There is still much room for improvement in the ability of these algorithms to predict cardiovascular 

disease. The best performing model classified only 73% of cases correctly. Expanding these techniques to a 

larger dataset with more potential risk factors may increase the effectiveness of these techniques. Qi et al. 

found that machine learning techniques applied to electronic medical records (EMR) produced the best 

prediction models (AUC 0.902) when the EMR data contained both longitudinal and cross-sectional patient 

data [27]. Distinct types of CVD may require different modeling approaches. Krittanawong found that 

boosting algorithms best predicted coronary artery disease while support vector machine algorithms best 

predicted stroke [28]. Kwon et al. reported that feedforward neural network and gradient boosting machine 

algorithms predicted adverse cardiac events following invasive coronary treatments [29].  

ROC analysis not only provided support for the increased accuracy of the continuous SBP model, 

but also provided guidance on clinical cut points that could be utilized in this dataset [30]. Unfortunately, 

dichotomizing hypertension status based on these new cut points did not improve accuracy over the model 
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which used SBP as a continuous variable. These new cut points would have limited applicability outside of 

this dataset as they were based on this particular group of subjects.  

Supervised learning algorithms in SPSS Modeler appeared to meet or exceed the accuracy of the 

original decision tree models. Neural net appears to function the best in females and LSVM and Tree-AS also 

performed well. In males, logistic regression was the best algorithm while LSVM and neural net were close 

seconds. Once again, SBP as a continuous variable performed the best. 
 
 

5. CONCLUSION 

In conclusion, our study shows that changing the criteria by which individuals are classified as 

hypertensive or normotensive negatively impacted the ability of decision tree o predict cardiovascular disease 

in both females and males by 7.2% and 9.1%, respectively. While artificially binning continuous variables 

may offer simplicity and convenience, this practice does indeed negatively impact the predictive capabilities 

of supervised learning algorithms. Artificially binning hypertension status also decreased the ability of 

decision tree to predict cardiovascular disease in females and males by 7.8% and 9.6%, respectively. 

Supervised learning appears to offer advantages over traditional cardiovascular disease risk prediction 

techniques when applied to available datasets. The ultimate goal of such procedures is to identify those most 

at risk to direct additional attention and resources to mitigate the risk of cardiovascular disease. It remains to 

be seen if incorporating supervised and machine learning algorithms into medical practice will increase 

prognostic ability when the disease status of the patient is unknown. 
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