EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy

Sharanreddy Mallikarjun Akareddy, P.K. Kulkarni

Abstract


Epilepsy is a common chronic neurological disorder. Epilepsy seizures are the result of the transient and unexpected electrical disturbance of the brain. About 50 million people worldwide have epilepsy, and nearly two out of every three new cases are discovered in developing countries. Epilepsy is more likely to occur in young children or people over the age of 65 years; however, it can occur at any age. The detection of epilepsy is possible by analyzing EEG signals. This paper, presents a hybrid technique to classification EEG signals for identification of epilepsy seizure. Proposed system is combination of multi-wavelet transform and artificial neural network. Approximate Entropy algorithm is enhanced (called as Improved Approximate Entropy: IApE) to measure irregularities present in the EEG signals. The proposed technique is implemented, tested and compared with existing method, based on performance indices such as sensitivity, specificity, accuracy parameters. EEG signals are classified as normal and epilepsy seizures with an accuracy of ~90%.

DOI: http://dx.doi.org/10.11591/ijphs.v2i1.1836


Full Text:

PDF
Total views : 380 times

Refbacks

  • There are currently no refbacks.


International Journal of Public Health Science (IJPHS)
p-ISSN: 2252-8806, e-ISSN: 2620-4126

View IJPHS Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.