A Potential For Dengue Vector Surveillance (Aedes albopictus) With Ovitrap and Attractants From Imperata Grass Immersion (Imperata cylindrica Raeusch)

M Rasyid Ridha, Budi Hairani, Abdullah Fadilly, Gusti Meliyanie

Abstract


Efforts to control the vector in reducing the population of Aedes albopictus can be done by using attractants with ovitrap. This study aims to determine the variation of Imperata cylindrica Raeusch's immersion straw immersion dose on the number of eggs and hatchability of Aedes albopictus in the laboratory. Research type is a true experiment with a completely randomized design (CRD). The material used is Imperata cylindrica Raeusch soaking with 5%, 10%, 15%, 20% concentration and aquadest as a control with 5 replications. The results showed that Imperata grass soaking was proven to be effective as an attractant in Aedes albopictus mosquitoes and was able to inhibit the number of eggs that hatch. Utilization of Imperata straw soaking can be used as an additive in the ovitrap in dengue vector surveillance.

References


J. J. Bara, A. T. Parker, and E. J. Muturi, “Vector / Pathogen / Host Interaction , Transmission Comparative Susceptibility of Ochlerotatus japonicus, Ochlerotatus triseriatus, Aedes albopictus, and Aedes aegypti ( Diptera : Culicidae ) to La Crosse Virus,” J. Med. Entomol., vol. 53, no. 6, pp. 1–7, 2016.

S. Leta, T. Jibat, E. M. De Clercq, K. Amenu, M. U. G. Kraemer, and C. W. Revie, “Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus,” Int. J. Infect. Dis., vol. 67, pp. 25–35, 2018.

G. Cancrini, A. Frangipane, I. Ricci, C. Tessarin, S. Gabrielli, and M. Pietrobelli, “Aedes albopictus is a natural vector of Dirofilaria immitis in Italy,” Vet. Parasitol., vol. 118, no. 3, pp. 195–202, 2003.

V. Shi, L. Goh, and C. Mok, “Antiviral Natural Products for Arbovirus Infections,” Molecules, vol. 25, no. 12, p. 2796, 2020.

F. Ding, J. Fu, M. Hao, and G. Lin, “Mapping the spatial distribution of Aedes aegypti and Aedes albopictus,” Acta Trop., vol. 178, no. October 2017, pp. 155–162, 2018.

A. J. Maynard et al., “Tiger on the prowl : Invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus ( Skuse 1894 ) in the Indo-Pacific,” PLoS Negl. Trop. Dis., vol. 11, no. 4, pp. 1–27, 2017.

S. Thangamani, J. Huang, C. E. Hart, H. Guzman, and R. B. Tesh, “Vertical Transmission of Zika Virus in Aedes aegypti Mosquitoes,” Am. J. Trop. Med. Hyg., vol. 95, no. 5, pp. 1169–1173, 2016.

V. H. Ferreira-de-lima and T. N. Lima-camara, “Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus : a systematic review,” Parasit. Vectors, vol. 11, no. 77, pp. 1–8, 2018.

A. Tawatsin, U. Thavara, N. Srivarom, P. Siriyasatien, and A. Wongtitirote, “LeO-Trap ® : A Novel Lethal Ovitrap Developed from Combination of the Physically Attractive Design of the Ovitrap with Biochemical Attractant and Larvicide for Controlling Aedes aegypti ( L .) and Ae . albopictus ( Skuse ) ( Diptera : Culicidae ),” 2019.

World Health Organization, Guidelines for dengue surveillance and mosquito control. 2nd ed. Swiss: WHO Regional Office for the Western Pacific, 2016.

L. K. Eneh, H. Saijo, A. Karin, B. Karlson, J. M. Lindh, and G. K. Rajarao, “Cedrol , a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus,” Malar. J., vol. 15, p. 478, 2016.

M. Martini, A. Prihatnolo, and R. Hestiningsih, “Modified Ovitrap to Control Aedes Sp Population in Central Java , Indonesia o n,” vol. 49, no. 3, pp. 53–57, 2017.

M. R. Ridha, A. Fadilly, B. Hairani, and G. Meliyanie, “Efektivitas Atraktan terhadap Daya Tetas dan Jumlah Telur Nyamuk Aedes albopictus di Laboratorium,” Aspirator, vol. 11, no. 2, pp. 88–89, 2019.

H. Adrianto, A. Nur, and M. Ansori, “Potensi Larvasida d ari E kstrak Daun Jeruk Bali ( Citrus maxima ) t erhadap Aedes aegypti dan Culex quinquefasciatus Larvicidal Potential of Pomelo ( Citrus maxima ) Leaf Extract Against Aedes Aegypti and Culex quinquefasciatus,” J. Vektor Penyakit, vol. 12, no. 1, pp. 19–24, 2018.

C. Utami, Ika. Widya Hary, “Potensi Ekstrak Daun Kamboja (Plumeria acuminata) sebagai Insektisida terhadap Nyamuk Aedes aegypti,” HIGEIA (Journal Public Heal. Res. Dev., vol. 1, no. 1, pp. 22–28, 2017.

A. S. Handayani, S, W., Prastowo, D., Boesri, H., Oktsariyanti, A., & Joharina, “Efektivitas Ekstrak Daun Tembakau (Nicotiana tabacum L) dari Semarang, Temanggung, dan Kendal Sebagai Larvasida Aedes aegypti L. BANJARNEGARA,” Balaba J. Litbang Pengendali. Penyakit Bersumber Binatang Banjarnegara, vol. 14, no. 1, pp. 23-30., 2018.

G. Benelli and M. Govindarajan, “Green-Synthesized Mosquito Oviposition Attractants and Ovicides : Towards a Nanoparticle-Based ‘“ Lure and Kill ”’ Approach ?,” J. Clust. Sci., vol. 28, no. 1, pp. 287–308, 2017.

N. Acree, F., Turner, R. B., Gouck, H. K., Beroza, M., & Smith, “L-Lactic acid: a mosquito attractant isolated from humans.,” Science, vol. 161, no. (3848), pp. 1346–1347, 1968.

M. W. Arnold and M. W. Arnold, “Patent Application Publication ( 10 ) Pub . No . : US 2018 / 0325121 A1: Insect Attractant And Eradicant,” 2018.

A. Mukherjee, N. Sarkar, and A. Barik, “Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas ( Coleoptera : Chrysomelidae ),” J. Asia. Pac. Entomol., vol. 17, no. 3, pp. 229–234, 2014.

P. Adhikary, A. Mukherjee, and A. Barik, “Free fatty acids from Lathyrus sativus seed coats acting as short-range attractants to Callosobruchus maculatus ( F .) ( Coleoptera : Bruchidae ),” J. Stored Prod. Res., pp. 1–7, 2016.

R. Saratha and N. Mathew, “Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti,” no. Potter 2014, 2015.

A. P. M. Venkatesh and A. Sen, “Laboratory Evaluation of Synthetic Blends of l- ( + ) -Lactic Acid , Ammonia , and Ketones As Potential Attractants For Aedes aegypti” J. Am. Mosq. Control Assoc., vol. 33, no. 4, pp. 301–308, 2017.

W. Takken and N. O. Verhulst, “ScienceDirect Chemical signaling in mosquito – host interactions : the role of human skin microbiota,” Curr. Opin. Insect Sci., vol. 20, pp. 68–74.

L. Hamouche et al., “The Effect Of Chemotaxis On The Swarming Ability Of Bacillus subtilis : Critical Effect Of Glutamic Acid And Lysine,” Int. J. Sci. Technol. Res., vol. 4, no. 10, pp. 14–21, 2015.

L. Mcphatter and A. C. Gerry, “Effect of CO2 concentration on mosquito collection rate using odor-baited suction traps,” no. June, pp. 44–50, 2017.

C. Montell and L. J. Zwiebel, Mosquito Sensory Systems, 1st ed., vol. 51. Elsevier Ltd., 2016.

P. Xu et al., “Odorant Inhibition in Mosquito Olfaction Odorant Inhibition in Mosquito Olfaction,” ISCIENCE, vol. 19, pp. 25–38, 2019.

A. Haque, N. Barman, K. Kim, H. Dae, and K. Man, “Cogon grass ( Imperata cylindrica ), a potential biomass candidate for bioethanol : cell wall structural changes enhancing hydrolysis in a mild alkali pretreatment regime,” J. Sci. Food Agric., vol. 96, no. June, pp. 1790–1797, 2015.

I. Beauv, E. S. Elkhayat, and T. Okino, “Chemical Composition and Hepato-protective activity of,” Pharmacogn. Mag., vol. 4, no. 17, pp. 28–36, 2009.

A. S. Rikin, “LIPI Uji Coba Tanam Sorgum di Lahan Marginal,” Berita Satu.

M. Lau, K, W., Chen, C. D., Lee, H. L., Low, V. L., Moh, H. H., & Sofian-Azirun, “Ovitrap surveillance in Sarawak , Malaysia : A comprehensive,” Trop. Biomed., vol. 34, no. 4, pp. 795–803, 2017.




DOI: http://doi.org/10.11591/ijphs.v9i4.20544
Total views : 24 times

Refbacks

  • There are currently no refbacks.


International Journal of Public Health Science (IJPHS)
p-ISSN: 2252-8806, e-ISSN: 2620-4126

View IJPHS Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.