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 In earlier decade, heart disease was the most common cause of death  
in the US. Among the many important risk factors such as age, number of 
cigarettes smoke could help in determining the odds of having corona heart 
disease (CHD) when modeling with other important factors.  
We analyzed ongoing cardiovascular study on residents of the town  
of Framingham, Massachusetts, US to predict the 10-year risk of future 
CHD. We applied the Binary logistic regression model to assess the strength 
of the association of factors (such as gender, age, number of cigarettes 
smoke, total cholesterol level) in predicting the odds of having CHD  

in study population. Results showed that gender, age, number of cigarette 
smoke, systolic blood pressure were statistically significant and  
the increased age and cigarettes per day increase the odds of having 10-year 
risk of CHD. However, the noticeable finding was that patients with Diabetes  
at higher glucose level have the higher odds of having 10-year risk of CHD than 
with low level of glucose concentration among the residents  
of Framingham study.  
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1. INTRODUCTION  

Cardiovascular disease (CVDs) are a group of disorders of the heart and blood vessels and they include two 

major sub-type of disease: coronary heart disease (CHD) and cerebrovascular disease (stroke). Despite the advances 

in clinical care and medicine, cardiovascular diseases (CVDs) are continuing to be the principal cause of morbidity 

and mortality. Cardiovascular disease (CVDs) are a group of disorders of the heart and blood vessels and they include 

two major sub-type of disease: coronary heart disease (CHD) and cerebrovascular disease (stroke). The primary cause 

of CHD is atherosclerosis that reduces blood flow through the coronary arteries to the heart muscle and therefore 

malfunctioning starts in heart. CHD is now the leading cause of death worldwide. As estimated 3.8 million men and 

3.4 million women die each year from CHD [1]. In developed countries heart disease is the leading cause of death  

in men and women [2, 3]. However, according to a report of world health organization (WHO) in 2005,  
the prevalence and mortality due to coronary heart disease (CHD) is declining in the developed nations.  

Although rates of CVD have long since peaked for many developed countries and mortality from the disease  

is declining, it still accounts for almost a third (32.8%) of all deaths in the U.S. and a large majority of cardiac deaths 

in the U.S. are due to coronary heart disease (CHD) [4].  

In 2009, CHD accounted for 64% of all Cardiac deaths in the U.S [4]. Cognitive decline and CVDs 

share many vascular risk factors (VRFs) such as smoking, hypertension, and diabetes mellitus; furthermore, 
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CVDs can contribute to cognitive decline by causing cerebral hypoperfusion, hypoxia, emboli, or infarcts [5]. 

Also, hypertension is a leading modifiable risk factor for heart disease and stroke [6-8].  

Again, for developing hypertension there are some factors [9], which may not directly related with CHD but 

secondarily associated with CHD. Therefore, it is important to identify the associated risk factors to predict 

the risk of coronary heart disease (CHD) among individuals. Several research [10-12] has been conducted  

so far to identify the association of risk factors to coronary heart diseases (CHD). The focus of this study was 

to develop a binary logistic regression model to explore the relationship between the associated risk factors 

such as gender, age, number of cigarettes consumptions, total cholesterol level, glucose level etc.  

with 10-year risk of coronary heart disease (CHD) for the residents in Framingham, Massachusetts, U.S,  

as our outcome variable is a dichotomous in nature.  

In recent years, the rate of CHD is increasing rapidly and researchers of U.S are engaging 
themselves to identify the factors of future risk of coronary heart diseases (CHD) [13-18].  

The associated Research Questions are: Are men more susceptible to heart disease than women?  

does increased age and number of cigarettes smoked, show increasing odds of having heart disease?  

does increase in total cholesterol level and glucose level, increases the likelihood of having 10-year risk  

of coronary heart disease CHD?. The organization of the paper was as follows: In Section 2, we described 

data collection procedure and description of variables used in the analysis. Section 3 discussed about  

the methodology and analysis procedure. In Section 4, we discussed results of the final fitted logistic 

regression model. This paper ends with conclusion and possible discussion about the findings in Section 5. 

 

 

2. RESEARCH  METHOD 
The dataset is publicly available on the Kaggle website [19], and it is an ongoing cardiovascular 

study on residents of the town of Framingham, Massachusetts. The dataset provides the patients’ information. 

To answer associated research questions and to obtain the best fit model, our dataset consists over  

4,250 records and 15 attributes. Following data description provides the variable name and its description. 

Each attribute is a potential risk factor. There are both demographic, behavioral and medical risk factors:  

Sex: male or female of patient; Age: age of the patient, CurrentSmoker: whether the patient is a current 

smoker (yes, no), CigsPerDay: the number of cigarettes the person smoked on average in one day, BPMeds: 

whether the patient was on blood pressure medication (yes, no), prevalentStroke: whether the patient had 

previously had a stroke (yes, no), prevalentHyp: whether the patient was hypertensive (yes, no), diabetes: 

whether the patient had diabetes or not (yes,no); totChol: total cholesterol level of patient, sysBP:  

systolic blood pressure of patient; diaBP: diastolic blood pressure of patient; BMI: Body Mass Index  

of patient; glucose: glucose level of patient, heartRate: heart rate (continuous-In medical research,  
variables such as heart rate though in fact discrete, yet are considered continuous because of large number  

of possible values.) Predict variable (desired target): 10-year risk of coronary heart disease CHD  

(binary: “1”, means “Yes”, “0” means “No”). In the dataset, there were missing values for CigsPerDay (29), 

BPMeds (53), TotChol (50), BMI (19), heartRate (1), and glcLevel (388). We did not consider any missing 

value analysis technique in our data analysis section. 

It is customary to use Binary Logistic Regression as our outcome variable is dichotomous or binary 

(1=the patient has 10-year risk of CHD, 0=the patient does not have 10-year risk of CHD).  

The Framingham dataset consists of binary (or nominal) and continuous independent variables [20-23].  

To select the best model for our analysis we used purposeful selection of covariates to minimize  

the number of variables (parsimony) in the model such that the resultant model is more likely  

to be numerically stable and is more easily generalized. First, we run the univariate analysis for each  
of the covariates, to select out preliminary main effects model. We selected all the variables as they are all 

significant at 20% level of significance that can be seen in Table 1. 

Then we run the multivariable analysis with all the selected variables and found CurrentSmoker  

(p=0.6326), BPMeds (p=0.5330), PrevalentStroke (p=0.1415), PrevalentHyp (p=0.1162), Diabetes (p=0.9944), 

DiaBP (p=0.5332), BMI (p=0.4085), and HeartRate (p=0.5833) were not statistically significant that can  

be seen in Table 2, we excluded these variables for our main effect model. However, BMI, Diabetes, 

CurrentSomker and PrevalentHyp are clinically more significant for developing coronary heart diseases 

(CHD) [24], therefore, our preliminary main effect model is: 

 

 ( )    (
 ( )

   ( )
)  

                                                       
                                                              (1) 
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Table 1. Analysis of maximum likelihood estimates 

Parameter Estimate Standard Error Wald Chi-Square Pr>ChiSq 
Odds 

Ratio 

95 % CI for 

Odds ratio 

Sex 0.49916 0.0859 32.72 <.0001 1.635 1.382 1.935 

Age 0.0746 0.00527 201.016 <.0001 1.078 1.066 1.089 

CurrentSmoker 0.1084 0.8560 1.6028 0.2055 1.114 0.942 1.368 

CigsPerDay 0.0127 0.00340 13.96 0.0002 1.013 1.006 1.020 

BPMeds 1.0635 0.1960 29.44 <.0001 2.896 1.973 4.253 

PrevalentStroke 1.4921 0.4052 13.5601 0.0002 4.447 2.010 9.899 

PrevalentHyp 0.9837 0.0872 127.26 <.0001 2.674 2.254 3.173 

Diabetes 1.1219 0.2035 35.89 <.0001 3.385 2.272 5.045 

TotChol 0.0048 0.00093 27.75 <.0001 1.005 1.003 1.007 

SysBP 0.0241 0.00180 178.445 <.0001 1.024 1.021 1.028 

DiaBP 0.0317 0.00342 86.06 <.0001 1.032 1.025 1.039 

BMI 0.0486 0.0099 23.65 <.0001 1.050 1.029 1.071 

HeartRate 0.0052 0.00351 2.229 0.1360 1.005 0.998 1.012 

glcLevel 0.0105 0.00157 44.588 <.0001 1.011 1.007 1.014 

 

 
Table 2. Final model fit to the framingham CHD study data, n=3803 

Parameter Coeff. Std. Err. z p 

Intercept -8.7215*** 2.3584 13.675 0.0002 

Sex 0.5276*** 0.1066 24.5117 <0.0001 

Age 0.1137*** 0.0331 11.8026 0.0006 

CurrentSmoker 0.0721 0.1534 0.2212 0.6381 

CigsPerDay 0.0181** 0.00606 8.9462 0.0028 

PrevalentHyp 0.2155 0.1330 2.6241 0.1052 

Diabetes -.7789 0.6041 1.3756 0.2408 

TotChol 0.00242 0.00973 0.0616 0.8040 

SysBP 0.0139*** 0.00284 23.8504 <.0001 

BMI -0.0322 0.0641 0.2520 0.6157 

glcLevel -0.0132 0.0110 1.4463 0.2291 

Age*TotChol -0.00019 0.000136 2.0569 0.1515 

glcLevel*TotChol 0.000070* 0.000042 2.7631 0.0965 

BMI*TotChol 0.000169 0.00260 0.4210 0.5165 

Diabetes*glcLevel 0.00668 0.00482 1.9215 0.1657 

 

 

Almost all our independent variables (such as Age, BMI, CigsPerDay, SysBP, TotChol and 

glcLevel) are continuous, we checked the assumption of linearity in the logit for these variables.  

All other variables were linear in the logit except for glcLevel. We tried different transformations approache 
for this variable but none of the transformations support the assumption. We retain our original variable  

as it is for entering the final model. Then we included different pairs of interactions one by one into the main 

effects model which are clinically meaningful and keep only important pair of interactions such  

as age*totChol, bmi*totChol, diabetes*glcLevel and glcLevel*totChol based on the Wald statistic value that 

can be seen in Table 3, therefore our final preliminary model is: 

 

 ( )                                                         
                                                                     
                                                                    (2) 

 
In order to assess the fit of the model, from the Hosmer–Lemeshow goodness of fit statistic  

the corresponding p-value computed from the chi-square distribution with 8 degrees of freedom is 0.7591. 

Therefore, we do not reject the null hypothesis, and this indicates that the model seems to fit quite well. 

Deviance and Pearson Goodness-of-Fit Statistics also suggests that the model fits well as the p-values are 

1.000 and 0.3396 respectively. The Percent Concordant has a high value of 74.2. This suggests that the model  

is good. We also check the Somers' D and Gamma statistic where both have moderate value 0.481.   

The area under the ROC curve of our selected model is 0.7416. This suggests that our selected model can 

describe discrimination appropriately and comparing with AUC of ROC for other models, our model  

is performing better in describing the discrimination. Therefore, we can say that our final model fits well.  

In order to find the subjects which seems to be poorly fit or over influential, we check the plots of Influence 

Diagnostic and predicted probability diagnostic as can be seen in Figure 1 and found that the subject ID 963 
and ID 3488 are influential. The plot of standardized Pearson residuals against predicted values also suggests 

that the residuals are quite independent as can be seen in Figure 2. 
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Table 3. Interactions included one by one into the main effect model 
Parameter Coeff. Std. Err. Wald Chi-Sqr P>Chi-Sqr 

Age*Currentsmoker -0.0133 0.0122 1.1879 0.2756 

Age*BMI -0.00066 0.00137 0.2336 0.6289 

Age*CigsPerDay 0.000269 0.000479 0.3158 0.5741 

Age*PrevalentHyp -0.00142 0.0122 0.0135 0.9076 

Age*Diabetes -0.0284 0.0319 0.7909 0.3738 

Age*TotChol -0.00018 0.000134 1.8005 0.1796 

Age*SysBP -0.00015 0.000259 0.3247 0.5582 

Age*glcLevel 0.000020 0.000231 0.0078 0.9298 

Sex*totChol 0.00261 0.00215 1.4689 0.2255 

Sex*SysBP 0.00593 0.00412 2.0692 0.1503 

PrevalentHyp*glcLevel 0.00496 0.00342 2.1034 0.1470 

BMI*glcLevel 0.000159 0.000296 0.2893 0.5907 

TotChol*glcLevel 0.000067 0.000039 2.889 0.0892 

BMI*TotChol 0.000277 0.000251 0.7499 0.3865 

Diabetes*glcLevel 0.00612 0.00467 1.7157 0.1902 

 

 

 
 

 

 
 

Figure 1. Influence diagnostic and predicted probability 
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Figure 2. Standardize Pearson residuals 

 

 

3. RESULTS AND DISCUSSION 

Each of our fourteen covariates was statistically significant in the univariate analysis with 20% level 
of significance. The variable Prevalent Stroke has high odds ratio (4.447 odds of having 10-year risk  

of CHD for those who have previous history of stroke compared to those who do not have) compared to other 

covariates in the univariable analysis of Logistic regression that can be seen in Table 1. But in final Logistic 

Regression model, after excluding BPMeds, Prevalent Stroke, DiaBP and Heartrate, and adding four 

interactions that are clinically significant, only one (totChol*glcLevel) among them are clinically and 

marginally statistically significant, we found that CurrentSmoker (z=0.2212, p=0.6381). 

PrevalentHyp(z=2.6241, p=0.1052), BMI, Diabetes, totChol, glcLevel, Diabetes*glcLevel, 

BMI*totChol, and age*totChol were not statistically significant, but we keep them in our model as they have 

clinical significance. Age is statistically significant (z=11.8026, p=0.0006) and the effect of age is modified 

by the effect of total cholesterol levels of the patients. When all the modification effects are at level of zero, 

the increase in age by 5 years increases the odds of having 10-year risk of CHD by 76% 

[exp(5*0.1137)=1.76]. Sex is highly statistically significant (z=24.5117, p<0.0001) and no other covariates 
modifies Sex effects. Also from Table 4 we observed the odds ratio for Sex (OR=1.695, CI=(1.375, 2.089)) 

with confidence interval, indicates that odds of having 10-year risk of CHD among males are 69.5% more 

than females by controlling all other independent variables. More specifically, males are more susceptible  

of having 10-year risk of CHD than females. 

CigsPerDay is statistically significant (z=8.9462, p=0.0028) and no other covariates modifies 

CigsPerDay effects on outcome. Therefore, the patients who has taken CigsPerDay by 5(say) units higher 

than other patients, the odds of having 10-year risk of CHD for the patients with higher frequency  

of CigsPerDay is 9.4% [exp(5*0.0181)=1.094] higher than the patients with lower consumption  

of CigsPerDay. To the end, higher consumption of CigsPerDay increases the likelihood of having 10-year 

risk of CHD for our study population. SysBP is statistically significant as can be seen in Table 2, z=23.8504, 
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p<0.0001) and no other covariates modifies SysBP effects on outcome variable. Therefore, the patients who 

has SysBP by 5(say) units higher than other patients, the odds of having 10-year risk of CHD for the patients 

with higher SysBP is 7.2% [exp(5*0.0139)=1.072] higher than the patients with lower SysBP.  
 

 

Table 4. Odds ratio estimates and profile-likelihood confidence intervals 
Effect Unit Estimate 95% Confidence limits 

Sex 1.0 1.695 1.375 2.089 

currentSmoker 1.0 1.075 0.796 1.452 

cigsPerDay 1.0 1.018 1.006 1.030 

prevalentHyp 1.0 1.240 0.956 1.610 

sysBP 1.0 1.014 1.008 1.020 

 

 

TotChol and BMI are clinically significant factor for cardiovascular diseases, however,  

they are not statistically significant in our case. Similarly, diabetes and glcLevel are potential risk factor for 
developing the cardiovascular disease, but these are not statistically significant. Only interaction that are 

clinically and marginally statistically significant for our data set is totChol*glcLevel (z=2.7631, p=0.09).  

It means that the effect of totChol for patients with 10-year risk of CHD varies according to different glucose 

level, keeping BMI and age values at average level that can be seen in Figure 3. To the end, the increase  

in total cholesterol level and glucose level, increases the likelihood of having 10-year risk of coronary heart 

disease CHD for our study population. Also, the effect of Diabetes was modified by the effect of glucose 

level. For subjects who have glucose concentration level above 100 and have Diabetes mellitus, the odds  

of 10-year risk of having CHD is much higher for them as can be seen in Figure 4. 
 

 

 
 

Figure 3. Odds ratio of interaction effect of totchol*glclevel in final model 
 

 

 
 

Figure 4. Odds ratio of interaction effect diabetes*glclevel in the final model 
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Our final model is both statistically and clinically significant and the goodness of model fit also 
support the model ability to perform well as the Area Under the ROC curve is moderately high  

to discriminate between those subjects who experience the outcome of interest and versus those who do not.  

In diagnostic checking using the standardized Pearson residuals and other techniques like DFBETAS, 

DIFDEV and DIFCHISQ, the model exhibits a good fitting considering no influential and outliers were 

present in our dataset. All the predictors of the model are clinically meaningful and then we see that except 

CurrentSomoker, PrevalentHyp, BMI, Diabetes, totChol, glcLevel, Diabetes*glcLevel, BMI*totChol,  

and age*totChol all other covariates are statistically significant in our final model. We found Sex, 

CigsPerDay, SysBP and Age which are risk factors for having cardiovascular disease, and are highly 

influential in predicting CHD that supports the literature [25-27]. We also found that the increased effect of age 

increased the likelihood of having CHD which supports the recent findings [28]. In addition, the effect  

of totChol is modified by the effect of glucose concentration level of the patients that also supports literature [29]. 

Moreover, the effect of Diabetes is modified by the effect of glucose concentration level for patients [30].  
We found that the odds ratio of having CHD is highest at 1.249 (CI: 0.628, 2.485) when the glucose 

concentration level is high as of 150 units with diabetes cases which also supports the findings [31]. 

 

 

4. CONCLUSION 

All the analysis has been done using SAS 9.2 software.From our analysis, we found that the 

coefficient of the coefficient of BMI, Diabetes, Glucose level, Age*glcLevel are negative which suggests that 

the odds of having 10-year risk of CHD will decrease with the increased value of those terms. On the other 

hand, the coefficient of SEX, Age, CurrentSmoker, CigsPerDay, PervalentHyp, totChol, SysBP, 

totChol*glcLevel, diabetes*glcLevel, BMI*totChol have positive signs, therefore the odds of having 10-year 

risk of CHD will increase with the increased value of those terms. The higher the magnitude of these 

coefficients the odds of having CHD will increase or decrease based on the positive or negative sign, 

respectively, of the respective coefficients. In conclusion, we found that Sex, Age, CigsPerDay and SysBP 
are important risk factors in predicting 10-year risk of CHD for Framingham study population and the effects 

of Age was modified with the totalChol level. However, the effect of totChol also is modified with glucose 

concentration level and BMI factors. The increased Age and CigsPerDay increases the odds of having 10-

year risk of CHD, but the noticeable finding is that patients with Diabetes at higher level of glcLevel have the 

higher odds of having 10-year risk of CHD than with low level of glucose concentration. The limitation of 

this study was that the variable glcLevel had highest number of missing values. With improving this 

limitation and including other important covariates a better prediction model could be developed to identify 

risk of having CHD for Framingham study population.  
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